from utils.configuration import Configuration import tensorflow as tf from utils.model import ModelLoss from utils.model import LFUNet from utils.architectures import UNet import gradio as gr configuration = Configuration() filters = (64, 128, 128, 256, 256, 512) kernels = (7, 7, 7, 3, 3, 3) input_image_size = (256, 256, 3) architecture = UNet.RESIDUAL_ATTENTION_UNET_SEPARABLE_CONV trained_model = LFUNet.build_model(architecture=architecture, input_size=input_image_size, filters=filters, kernels=kernels, configuration=configuration) trained_model.compile( loss=ModelLoss.ms_ssim_l1_perceptual_loss, optimizer=tf.keras.optimizers.Adam(1e-4), metrics=["acc", tf.keras.metrics.Recall(), tf.keras.metrics.Precision()] ) weights_path = "model_weights/model_epochs-40_batch-20_loss-ms_ssim_l1_perceptual_loss_20230210_15_45_38.ckpt" trained_model.load_weights(weights_path) def main(input_img): try: print(input_img) predicted_image = trained_model.predict(input_img) return predicted_image except Exception as e: raise gr.Error("Sorry, something went wrong. Please try again!") demo = gr.Interface( title= "Lightweight network for face unmasking", description= "This is a demo of a Lightweight network for face unmasking \ designed to provide a powerful and efficient solution for restoring facial details obscured by masks.
\ To use it, simply upload your image, or click one of the examples to load them. Inference needs some time since this demo uses CPU.", fn = main, inputs= gr.Image(type="filepath").style(height=256), outputs=gr.Image(type='numpy',shape=(256, 256, 3)).style(height=256), # allow_flagging='never', examples=[ ["examples/1.png"], ["examples/2.png"], ["examples/3.png"], ["examples/4.png"], ["examples/5.png"], ["examples/6.png"], ["examples/7.png"], ["examples/8.png"], ], css = """ .svelte-mppz8v { text-align: -webkit-center; } .gallery { display: flex; flex-wrap: wrap; width: 100%; } p { font-size: medium; } h1 { font-size: xx-large; } """, theme= 'EveryPizza/Cartoony-Gradio-Theme', # article = "

Simple Baselines for Image Restoration | NAFSSR: Stereo Image Super-Resolution Using NAFNet | Github Repo

" ) demo.launch(show_error=True, share= True)