Upload 4 files
Browse files- keras_vggface/models.py +516 -0
- keras_vggface/utils.py +97 -0
- keras_vggface/version.py +8 -0
- keras_vggface/vggface.py +112 -0
keras_vggface/models.py
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''VGGFace models for Keras.
|
2 |
+
|
3 |
+
# Notes:
|
4 |
+
- Resnet50 and VGG16 are modified architectures from Keras Application folder. [Keras](https://keras.io)
|
5 |
+
|
6 |
+
- Squeeze and excitation block is taken from [Squeeze and Excitation Networks in
|
7 |
+
Keras](https://github.com/titu1994/keras-squeeze-excite-network) and modified.
|
8 |
+
|
9 |
+
'''
|
10 |
+
|
11 |
+
|
12 |
+
from keras.layers import Flatten, Dense, Input, GlobalAveragePooling2D, \
|
13 |
+
GlobalMaxPooling2D, Activation, Conv2D, MaxPooling2D, BatchNormalization, \
|
14 |
+
AveragePooling2D, Reshape, Permute, multiply
|
15 |
+
from keras_applications.imagenet_utils import _obtain_input_shape
|
16 |
+
from keras.utils import layer_utils
|
17 |
+
from keras.utils.data_utils import get_file
|
18 |
+
from keras import backend as K
|
19 |
+
from keras_vggface import utils
|
20 |
+
from keras.utils.layer_utils import get_source_inputs
|
21 |
+
import warnings
|
22 |
+
from keras.models import Model
|
23 |
+
from keras import layers
|
24 |
+
|
25 |
+
|
26 |
+
def VGG16(include_top=True, weights='vggface',
|
27 |
+
input_tensor=None, input_shape=None,
|
28 |
+
pooling=None,
|
29 |
+
classes=2622):
|
30 |
+
input_shape = _obtain_input_shape(input_shape,
|
31 |
+
default_size=224,
|
32 |
+
min_size=48,
|
33 |
+
data_format=K.image_data_format(),
|
34 |
+
require_flatten=include_top)
|
35 |
+
|
36 |
+
if input_tensor is None:
|
37 |
+
img_input = Input(shape=input_shape)
|
38 |
+
else:
|
39 |
+
if not K.is_keras_tensor(input_tensor):
|
40 |
+
img_input = Input(tensor=input_tensor, shape=input_shape)
|
41 |
+
else:
|
42 |
+
img_input = input_tensor
|
43 |
+
|
44 |
+
# Block 1
|
45 |
+
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_1')(
|
46 |
+
img_input)
|
47 |
+
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='conv1_2')(x)
|
48 |
+
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool1')(x)
|
49 |
+
|
50 |
+
# Block 2
|
51 |
+
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_1')(
|
52 |
+
x)
|
53 |
+
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='conv2_2')(
|
54 |
+
x)
|
55 |
+
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool2')(x)
|
56 |
+
|
57 |
+
# Block 3
|
58 |
+
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_1')(
|
59 |
+
x)
|
60 |
+
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_2')(
|
61 |
+
x)
|
62 |
+
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='conv3_3')(
|
63 |
+
x)
|
64 |
+
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool3')(x)
|
65 |
+
|
66 |
+
# Block 4
|
67 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_1')(
|
68 |
+
x)
|
69 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_2')(
|
70 |
+
x)
|
71 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv4_3')(
|
72 |
+
x)
|
73 |
+
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool4')(x)
|
74 |
+
|
75 |
+
# Block 5
|
76 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_1')(
|
77 |
+
x)
|
78 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_2')(
|
79 |
+
x)
|
80 |
+
x = Conv2D(512, (3, 3), activation='relu', padding='same', name='conv5_3')(
|
81 |
+
x)
|
82 |
+
x = MaxPooling2D((2, 2), strides=(2, 2), name='pool5')(x)
|
83 |
+
|
84 |
+
if include_top:
|
85 |
+
# Classification block
|
86 |
+
x = Flatten(name='flatten')(x)
|
87 |
+
x = Dense(4096, name='fc6')(x)
|
88 |
+
x = Activation('relu', name='fc6/relu')(x)
|
89 |
+
x = Dense(4096, name='fc7')(x)
|
90 |
+
x = Activation('relu', name='fc7/relu')(x)
|
91 |
+
x = Dense(classes, name='fc8')(x)
|
92 |
+
x = Activation('softmax', name='fc8/softmax')(x)
|
93 |
+
else:
|
94 |
+
if pooling == 'avg':
|
95 |
+
x = GlobalAveragePooling2D()(x)
|
96 |
+
elif pooling == 'max':
|
97 |
+
x = GlobalMaxPooling2D()(x)
|
98 |
+
|
99 |
+
# Ensure that the model takes into account
|
100 |
+
# any potential predecessors of `input_tensor`.
|
101 |
+
if input_tensor is not None:
|
102 |
+
inputs = get_source_inputs(input_tensor)
|
103 |
+
else:
|
104 |
+
inputs = img_input
|
105 |
+
# Create model.
|
106 |
+
model = Model(inputs, x, name='vggface_vgg16') # load weights
|
107 |
+
if weights == 'vggface':
|
108 |
+
if include_top:
|
109 |
+
weights_path = get_file('rcmalli_vggface_tf_vgg16.h5',
|
110 |
+
utils.
|
111 |
+
VGG16_WEIGHTS_PATH,
|
112 |
+
cache_subdir=utils.VGGFACE_DIR)
|
113 |
+
else:
|
114 |
+
weights_path = get_file('rcmalli_vggface_tf_notop_vgg16.h5',
|
115 |
+
utils.VGG16_WEIGHTS_PATH_NO_TOP,
|
116 |
+
cache_subdir=utils.VGGFACE_DIR)
|
117 |
+
model.load_weights(weights_path, by_name=True)
|
118 |
+
if K.backend() == 'theano':
|
119 |
+
layer_utils.convert_all_kernels_in_model(model)
|
120 |
+
|
121 |
+
if K.image_data_format() == 'channels_first':
|
122 |
+
if include_top:
|
123 |
+
maxpool = model.get_layer(name='pool5')
|
124 |
+
shape = maxpool.output_shape[1:]
|
125 |
+
dense = model.get_layer(name='fc6')
|
126 |
+
layer_utils.convert_dense_weights_data_format(dense, shape,
|
127 |
+
'channels_first')
|
128 |
+
|
129 |
+
if K.backend() == 'tensorflow':
|
130 |
+
warnings.warn('You are using the TensorFlow backend, yet you '
|
131 |
+
'are using the Theano '
|
132 |
+
'image data format convention '
|
133 |
+
'(`image_data_format="channels_first"`). '
|
134 |
+
'For best performance, set '
|
135 |
+
'`image_data_format="channels_last"` in '
|
136 |
+
'your Keras config '
|
137 |
+
'at ~/.keras/keras.json.')
|
138 |
+
return model
|
139 |
+
|
140 |
+
|
141 |
+
def resnet_identity_block(input_tensor, kernel_size, filters, stage, block,
|
142 |
+
bias=False):
|
143 |
+
filters1, filters2, filters3 = filters
|
144 |
+
if K.image_data_format() == 'channels_last':
|
145 |
+
bn_axis = 3
|
146 |
+
else:
|
147 |
+
bn_axis = 1
|
148 |
+
conv1_reduce_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_reduce"
|
149 |
+
conv1_increase_name = 'conv' + str(stage) + "_" + str(
|
150 |
+
block) + "_1x1_increase"
|
151 |
+
conv3_name = 'conv' + str(stage) + "_" + str(block) + "_3x3"
|
152 |
+
|
153 |
+
x = Conv2D(filters1, (1, 1), use_bias=bias, name=conv1_reduce_name)(
|
154 |
+
input_tensor)
|
155 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_reduce_name + "/bn")(x)
|
156 |
+
x = Activation('relu')(x)
|
157 |
+
|
158 |
+
x = Conv2D(filters2, kernel_size, use_bias=bias,
|
159 |
+
padding='same', name=conv3_name)(x)
|
160 |
+
x = BatchNormalization(axis=bn_axis, name=conv3_name + "/bn")(x)
|
161 |
+
x = Activation('relu')(x)
|
162 |
+
|
163 |
+
x = Conv2D(filters3, (1, 1), use_bias=bias, name=conv1_increase_name)(x)
|
164 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_increase_name + "/bn")(x)
|
165 |
+
|
166 |
+
x = layers.add([x, input_tensor])
|
167 |
+
x = Activation('relu')(x)
|
168 |
+
return x
|
169 |
+
|
170 |
+
|
171 |
+
def resnet_conv_block(input_tensor, kernel_size, filters, stage, block,
|
172 |
+
strides=(2, 2), bias=False):
|
173 |
+
filters1, filters2, filters3 = filters
|
174 |
+
if K.image_data_format() == 'channels_last':
|
175 |
+
bn_axis = 3
|
176 |
+
else:
|
177 |
+
bn_axis = 1
|
178 |
+
conv1_reduce_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_reduce"
|
179 |
+
conv1_increase_name = 'conv' + str(stage) + "_" + str(
|
180 |
+
block) + "_1x1_increase"
|
181 |
+
conv1_proj_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_proj"
|
182 |
+
conv3_name = 'conv' + str(stage) + "_" + str(block) + "_3x3"
|
183 |
+
|
184 |
+
x = Conv2D(filters1, (1, 1), strides=strides, use_bias=bias,
|
185 |
+
name=conv1_reduce_name)(input_tensor)
|
186 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_reduce_name + "/bn")(x)
|
187 |
+
x = Activation('relu')(x)
|
188 |
+
|
189 |
+
x = Conv2D(filters2, kernel_size, padding='same', use_bias=bias,
|
190 |
+
name=conv3_name)(x)
|
191 |
+
x = BatchNormalization(axis=bn_axis, name=conv3_name + "/bn")(x)
|
192 |
+
x = Activation('relu')(x)
|
193 |
+
|
194 |
+
x = Conv2D(filters3, (1, 1), name=conv1_increase_name, use_bias=bias)(x)
|
195 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_increase_name + "/bn")(x)
|
196 |
+
|
197 |
+
shortcut = Conv2D(filters3, (1, 1), strides=strides, use_bias=bias,
|
198 |
+
name=conv1_proj_name)(input_tensor)
|
199 |
+
shortcut = BatchNormalization(axis=bn_axis, name=conv1_proj_name + "/bn")(
|
200 |
+
shortcut)
|
201 |
+
|
202 |
+
x = layers.add([x, shortcut])
|
203 |
+
x = Activation('relu')(x)
|
204 |
+
return x
|
205 |
+
|
206 |
+
|
207 |
+
def RESNET50(include_top=True, weights='vggface',
|
208 |
+
input_tensor=None, input_shape=None,
|
209 |
+
pooling=None,
|
210 |
+
classes=8631):
|
211 |
+
input_shape = _obtain_input_shape(input_shape,
|
212 |
+
default_size=224,
|
213 |
+
min_size=32,
|
214 |
+
data_format=K.image_data_format(),
|
215 |
+
require_flatten=include_top,
|
216 |
+
weights=weights)
|
217 |
+
|
218 |
+
if input_tensor is None:
|
219 |
+
img_input = Input(shape=input_shape)
|
220 |
+
else:
|
221 |
+
if not K.is_keras_tensor(input_tensor):
|
222 |
+
img_input = Input(tensor=input_tensor, shape=input_shape)
|
223 |
+
else:
|
224 |
+
img_input = input_tensor
|
225 |
+
if K.image_data_format() == 'channels_last':
|
226 |
+
bn_axis = 3
|
227 |
+
else:
|
228 |
+
bn_axis = 1
|
229 |
+
|
230 |
+
x = Conv2D(
|
231 |
+
64, (7, 7), use_bias=False, strides=(2, 2), padding='same',
|
232 |
+
name='conv1/7x7_s2')(img_input)
|
233 |
+
x = BatchNormalization(axis=bn_axis, name='conv1/7x7_s2/bn')(x)
|
234 |
+
x = Activation('relu')(x)
|
235 |
+
x = MaxPooling2D((3, 3), strides=(2, 2))(x)
|
236 |
+
|
237 |
+
x = resnet_conv_block(x, 3, [64, 64, 256], stage=2, block=1, strides=(1, 1))
|
238 |
+
x = resnet_identity_block(x, 3, [64, 64, 256], stage=2, block=2)
|
239 |
+
x = resnet_identity_block(x, 3, [64, 64, 256], stage=2, block=3)
|
240 |
+
|
241 |
+
x = resnet_conv_block(x, 3, [128, 128, 512], stage=3, block=1)
|
242 |
+
x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=2)
|
243 |
+
x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=3)
|
244 |
+
x = resnet_identity_block(x, 3, [128, 128, 512], stage=3, block=4)
|
245 |
+
|
246 |
+
x = resnet_conv_block(x, 3, [256, 256, 1024], stage=4, block=1)
|
247 |
+
x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=2)
|
248 |
+
x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=3)
|
249 |
+
x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=4)
|
250 |
+
x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=5)
|
251 |
+
x = resnet_identity_block(x, 3, [256, 256, 1024], stage=4, block=6)
|
252 |
+
|
253 |
+
x = resnet_conv_block(x, 3, [512, 512, 2048], stage=5, block=1)
|
254 |
+
x = resnet_identity_block(x, 3, [512, 512, 2048], stage=5, block=2)
|
255 |
+
x = resnet_identity_block(x, 3, [512, 512, 2048], stage=5, block=3)
|
256 |
+
|
257 |
+
x = AveragePooling2D((7, 7), name='avg_pool')(x)
|
258 |
+
|
259 |
+
if include_top:
|
260 |
+
x = Flatten()(x)
|
261 |
+
x = Dense(classes, activation='softmax', name='classifier')(x)
|
262 |
+
else:
|
263 |
+
if pooling == 'avg':
|
264 |
+
x = GlobalAveragePooling2D()(x)
|
265 |
+
elif pooling == 'max':
|
266 |
+
x = GlobalMaxPooling2D()(x)
|
267 |
+
|
268 |
+
# Ensure that the model takes into account
|
269 |
+
# any potential predecessors of `input_tensor`.
|
270 |
+
if input_tensor is not None:
|
271 |
+
inputs = get_source_inputs(input_tensor)
|
272 |
+
else:
|
273 |
+
inputs = img_input
|
274 |
+
# Create model.
|
275 |
+
model = Model(inputs, x, name='vggface_resnet50')
|
276 |
+
|
277 |
+
# load weights
|
278 |
+
if weights == 'vggface':
|
279 |
+
if include_top:
|
280 |
+
weights_path = get_file('rcmalli_vggface_tf_resnet50.h5',
|
281 |
+
utils.RESNET50_WEIGHTS_PATH,
|
282 |
+
cache_subdir=utils.VGGFACE_DIR)
|
283 |
+
else:
|
284 |
+
weights_path = get_file('rcmalli_vggface_tf_notop_resnet50.h5',
|
285 |
+
utils.RESNET50_WEIGHTS_PATH_NO_TOP,
|
286 |
+
cache_subdir=utils.VGGFACE_DIR)
|
287 |
+
model.load_weights(weights_path)
|
288 |
+
if K.backend() == 'theano':
|
289 |
+
layer_utils.convert_all_kernels_in_model(model)
|
290 |
+
if include_top:
|
291 |
+
maxpool = model.get_layer(name='avg_pool')
|
292 |
+
shape = maxpool.output_shape[1:]
|
293 |
+
dense = model.get_layer(name='classifier')
|
294 |
+
layer_utils.convert_dense_weights_data_format(dense, shape,
|
295 |
+
'channels_first')
|
296 |
+
|
297 |
+
if K.image_data_format() == 'channels_first' and K.backend() == 'tensorflow':
|
298 |
+
warnings.warn('You are using the TensorFlow backend, yet you '
|
299 |
+
'are using the Theano '
|
300 |
+
'image data format convention '
|
301 |
+
'(`image_data_format="channels_first"`). '
|
302 |
+
'For best performance, set '
|
303 |
+
'`image_data_format="channels_last"` in '
|
304 |
+
'your Keras config '
|
305 |
+
'at ~/.keras/keras.json.')
|
306 |
+
elif weights is not None:
|
307 |
+
model.load_weights(weights)
|
308 |
+
|
309 |
+
return model
|
310 |
+
|
311 |
+
|
312 |
+
def senet_se_block(input_tensor, stage, block, compress_rate=16, bias=False):
|
313 |
+
conv1_down_name = 'conv' + str(stage) + "_" + str(
|
314 |
+
block) + "_1x1_down"
|
315 |
+
conv1_up_name = 'conv' + str(stage) + "_" + str(
|
316 |
+
block) + "_1x1_up"
|
317 |
+
|
318 |
+
num_channels = int(input_tensor.shape[-1])
|
319 |
+
bottle_neck = int(num_channels // compress_rate)
|
320 |
+
|
321 |
+
se = GlobalAveragePooling2D()(input_tensor)
|
322 |
+
se = Reshape((1, 1, num_channels))(se)
|
323 |
+
se = Conv2D(bottle_neck, (1, 1), use_bias=bias,
|
324 |
+
name=conv1_down_name)(se)
|
325 |
+
se = Activation('relu')(se)
|
326 |
+
se = Conv2D(num_channels, (1, 1), use_bias=bias,
|
327 |
+
name=conv1_up_name)(se)
|
328 |
+
se = Activation('sigmoid')(se)
|
329 |
+
|
330 |
+
x = input_tensor
|
331 |
+
x = multiply([x, se])
|
332 |
+
return x
|
333 |
+
|
334 |
+
|
335 |
+
def senet_conv_block(input_tensor, kernel_size, filters,
|
336 |
+
stage, block, bias=False, strides=(2, 2)):
|
337 |
+
filters1, filters2, filters3 = filters
|
338 |
+
if K.image_data_format() == 'channels_last':
|
339 |
+
bn_axis = 3
|
340 |
+
else:
|
341 |
+
bn_axis = 1
|
342 |
+
|
343 |
+
bn_eps = 0.0001
|
344 |
+
|
345 |
+
conv1_reduce_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_reduce"
|
346 |
+
conv1_increase_name = 'conv' + str(stage) + "_" + str(
|
347 |
+
block) + "_1x1_increase"
|
348 |
+
conv1_proj_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_proj"
|
349 |
+
conv3_name = 'conv' + str(stage) + "_" + str(block) + "_3x3"
|
350 |
+
|
351 |
+
x = Conv2D(filters1, (1, 1), use_bias=bias, strides=strides,
|
352 |
+
name=conv1_reduce_name)(input_tensor)
|
353 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_reduce_name + "/bn",epsilon=bn_eps)(x)
|
354 |
+
x = Activation('relu')(x)
|
355 |
+
|
356 |
+
x = Conv2D(filters2, kernel_size, padding='same', use_bias=bias,
|
357 |
+
name=conv3_name)(x)
|
358 |
+
x = BatchNormalization(axis=bn_axis, name=conv3_name + "/bn",epsilon=bn_eps)(x)
|
359 |
+
x = Activation('relu')(x)
|
360 |
+
|
361 |
+
x = Conv2D(filters3, (1, 1), name=conv1_increase_name, use_bias=bias)(x)
|
362 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_increase_name + "/bn" ,epsilon=bn_eps)(x)
|
363 |
+
|
364 |
+
se = senet_se_block(x, stage=stage, block=block, bias=True)
|
365 |
+
|
366 |
+
shortcut = Conv2D(filters3, (1, 1), use_bias=bias, strides=strides,
|
367 |
+
name=conv1_proj_name)(input_tensor)
|
368 |
+
shortcut = BatchNormalization(axis=bn_axis,
|
369 |
+
name=conv1_proj_name + "/bn",epsilon=bn_eps)(shortcut)
|
370 |
+
|
371 |
+
m = layers.add([se, shortcut])
|
372 |
+
m = Activation('relu')(m)
|
373 |
+
return m
|
374 |
+
|
375 |
+
|
376 |
+
def senet_identity_block(input_tensor, kernel_size,
|
377 |
+
filters, stage, block, bias=False):
|
378 |
+
filters1, filters2, filters3 = filters
|
379 |
+
if K.image_data_format() == 'channels_last':
|
380 |
+
bn_axis = 3
|
381 |
+
else:
|
382 |
+
bn_axis = 1
|
383 |
+
|
384 |
+
bn_eps = 0.0001
|
385 |
+
|
386 |
+
conv1_reduce_name = 'conv' + str(stage) + "_" + str(block) + "_1x1_reduce"
|
387 |
+
conv1_increase_name = 'conv' + str(stage) + "_" + str(
|
388 |
+
block) + "_1x1_increase"
|
389 |
+
conv3_name = 'conv' + str(stage) + "_" + str(block) + "_3x3"
|
390 |
+
|
391 |
+
x = Conv2D(filters1, (1, 1), use_bias=bias,
|
392 |
+
name=conv1_reduce_name)(input_tensor)
|
393 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_reduce_name + "/bn",epsilon=bn_eps)(x)
|
394 |
+
x = Activation('relu')(x)
|
395 |
+
|
396 |
+
x = Conv2D(filters2, kernel_size, padding='same', use_bias=bias,
|
397 |
+
name=conv3_name)(x)
|
398 |
+
x = BatchNormalization(axis=bn_axis, name=conv3_name + "/bn",epsilon=bn_eps)(x)
|
399 |
+
x = Activation('relu')(x)
|
400 |
+
|
401 |
+
x = Conv2D(filters3, (1, 1), name=conv1_increase_name, use_bias=bias)(x)
|
402 |
+
x = BatchNormalization(axis=bn_axis, name=conv1_increase_name + "/bn",epsilon=bn_eps)(x)
|
403 |
+
|
404 |
+
se = senet_se_block(x, stage=stage, block=block, bias=True)
|
405 |
+
|
406 |
+
m = layers.add([se, input_tensor])
|
407 |
+
m = Activation('relu')(m)
|
408 |
+
|
409 |
+
return m
|
410 |
+
|
411 |
+
|
412 |
+
def SENET50(include_top=True, weights='vggface',
|
413 |
+
input_tensor=None, input_shape=None,
|
414 |
+
pooling=None,
|
415 |
+
classes=8631):
|
416 |
+
input_shape = _obtain_input_shape(input_shape,
|
417 |
+
default_size=224,
|
418 |
+
min_size=197,
|
419 |
+
data_format=K.image_data_format(),
|
420 |
+
require_flatten=include_top,
|
421 |
+
weights=weights)
|
422 |
+
|
423 |
+
if input_tensor is None:
|
424 |
+
img_input = Input(shape=input_shape)
|
425 |
+
else:
|
426 |
+
if not K.is_keras_tensor(input_tensor):
|
427 |
+
img_input = Input(tensor=input_tensor, shape=input_shape)
|
428 |
+
else:
|
429 |
+
img_input = input_tensor
|
430 |
+
if K.image_data_format() == 'channels_last':
|
431 |
+
bn_axis = 3
|
432 |
+
else:
|
433 |
+
bn_axis = 1
|
434 |
+
|
435 |
+
bn_eps = 0.0001
|
436 |
+
|
437 |
+
x = Conv2D(
|
438 |
+
64, (7, 7), use_bias=False, strides=(2, 2), padding='same',
|
439 |
+
name='conv1/7x7_s2')(img_input)
|
440 |
+
x = BatchNormalization(axis=bn_axis, name='conv1/7x7_s2/bn',epsilon=bn_eps)(x)
|
441 |
+
x = Activation('relu')(x)
|
442 |
+
x = MaxPooling2D((3, 3), strides=(2, 2))(x)
|
443 |
+
|
444 |
+
x = senet_conv_block(x, 3, [64, 64, 256], stage=2, block=1, strides=(1, 1))
|
445 |
+
x = senet_identity_block(x, 3, [64, 64, 256], stage=2, block=2)
|
446 |
+
x = senet_identity_block(x, 3, [64, 64, 256], stage=2, block=3)
|
447 |
+
|
448 |
+
x = senet_conv_block(x, 3, [128, 128, 512], stage=3, block=1)
|
449 |
+
x = senet_identity_block(x, 3, [128, 128, 512], stage=3, block=2)
|
450 |
+
x = senet_identity_block(x, 3, [128, 128, 512], stage=3, block=3)
|
451 |
+
x = senet_identity_block(x, 3, [128, 128, 512], stage=3, block=4)
|
452 |
+
|
453 |
+
x = senet_conv_block(x, 3, [256, 256, 1024], stage=4, block=1)
|
454 |
+
x = senet_identity_block(x, 3, [256, 256, 1024], stage=4, block=2)
|
455 |
+
x = senet_identity_block(x, 3, [256, 256, 1024], stage=4, block=3)
|
456 |
+
x = senet_identity_block(x, 3, [256, 256, 1024], stage=4, block=4)
|
457 |
+
x = senet_identity_block(x, 3, [256, 256, 1024], stage=4, block=5)
|
458 |
+
x = senet_identity_block(x, 3, [256, 256, 1024], stage=4, block=6)
|
459 |
+
|
460 |
+
x = senet_conv_block(x, 3, [512, 512, 2048], stage=5, block=1)
|
461 |
+
x = senet_identity_block(x, 3, [512, 512, 2048], stage=5, block=2)
|
462 |
+
x = senet_identity_block(x, 3, [512, 512, 2048], stage=5, block=3)
|
463 |
+
|
464 |
+
x = AveragePooling2D((7, 7), name='avg_pool')(x)
|
465 |
+
|
466 |
+
if include_top:
|
467 |
+
x = Flatten()(x)
|
468 |
+
x = Dense(classes, activation='softmax', name='classifier')(x)
|
469 |
+
else:
|
470 |
+
if pooling == 'avg':
|
471 |
+
x = GlobalAveragePooling2D()(x)
|
472 |
+
elif pooling == 'max':
|
473 |
+
x = GlobalMaxPooling2D()(x)
|
474 |
+
|
475 |
+
# Ensure that the model takes into account
|
476 |
+
# any potential predecessors of `input_tensor`.
|
477 |
+
if input_tensor is not None:
|
478 |
+
inputs = get_source_inputs(input_tensor)
|
479 |
+
else:
|
480 |
+
inputs = img_input
|
481 |
+
# Create model.
|
482 |
+
model = Model(inputs, x, name='vggface_senet50')
|
483 |
+
|
484 |
+
# load weights
|
485 |
+
if weights == 'vggface':
|
486 |
+
if include_top:
|
487 |
+
weights_path = get_file('rcmalli_vggface_tf_senet50.h5',
|
488 |
+
utils.SENET50_WEIGHTS_PATH,
|
489 |
+
cache_subdir=utils.VGGFACE_DIR)
|
490 |
+
else:
|
491 |
+
weights_path = get_file('rcmalli_vggface_tf_notop_senet50.h5',
|
492 |
+
utils.SENET50_WEIGHTS_PATH_NO_TOP,
|
493 |
+
cache_subdir=utils.VGGFACE_DIR)
|
494 |
+
model.load_weights(weights_path)
|
495 |
+
if K.backend() == 'theano':
|
496 |
+
layer_utils.convert_all_kernels_in_model(model)
|
497 |
+
if include_top:
|
498 |
+
maxpool = model.get_layer(name='avg_pool')
|
499 |
+
shape = maxpool.output_shape[1:]
|
500 |
+
dense = model.get_layer(name='classifier')
|
501 |
+
layer_utils.convert_dense_weights_data_format(dense, shape,
|
502 |
+
'channels_first')
|
503 |
+
|
504 |
+
if K.image_data_format() == 'channels_first' and K.backend() == 'tensorflow':
|
505 |
+
warnings.warn('You are using the TensorFlow backend, yet you '
|
506 |
+
'are using the Theano '
|
507 |
+
'image data format convention '
|
508 |
+
'(`image_data_format="channels_first"`). '
|
509 |
+
'For best performance, set '
|
510 |
+
'`image_data_format="channels_last"` in '
|
511 |
+
'your Keras config '
|
512 |
+
'at ~/.keras/keras.json.')
|
513 |
+
elif weights is not None:
|
514 |
+
model.load_weights(weights)
|
515 |
+
|
516 |
+
return model
|
keras_vggface/utils.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''VGGFace models for Keras.
|
2 |
+
|
3 |
+
# Notes:
|
4 |
+
- Utility functions are modified versions of Keras functions [Keras](https://keras.io)
|
5 |
+
|
6 |
+
'''
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from keras import backend as K
|
12 |
+
from keras.utils.data_utils import get_file
|
13 |
+
|
14 |
+
V1_LABELS_PATH = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_labels_v1.npy'
|
15 |
+
V2_LABELS_PATH = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_labels_v2.npy'
|
16 |
+
|
17 |
+
VGG16_WEIGHTS_PATH = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_vgg16.h5'
|
18 |
+
VGG16_WEIGHTS_PATH_NO_TOP = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_notop_vgg16.h5'
|
19 |
+
|
20 |
+
|
21 |
+
RESNET50_WEIGHTS_PATH = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_resnet50.h5'
|
22 |
+
RESNET50_WEIGHTS_PATH_NO_TOP = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_notop_resnet50.h5'
|
23 |
+
|
24 |
+
SENET50_WEIGHTS_PATH = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_senet50.h5'
|
25 |
+
SENET50_WEIGHTS_PATH_NO_TOP = 'https://github.com/rcmalli/keras-vggface/releases/download/v2.0/rcmalli_vggface_tf_notop_senet50.h5'
|
26 |
+
|
27 |
+
|
28 |
+
VGGFACE_DIR = 'models/vggface'
|
29 |
+
|
30 |
+
|
31 |
+
def preprocess_input(x, data_format=None, version=1):
|
32 |
+
x_temp = np.copy(x)
|
33 |
+
if data_format is None:
|
34 |
+
data_format = K.image_data_format()
|
35 |
+
assert data_format in {'channels_last', 'channels_first'}
|
36 |
+
|
37 |
+
if version == 1:
|
38 |
+
if data_format == 'channels_first':
|
39 |
+
x_temp = x_temp[:, ::-1, ...]
|
40 |
+
x_temp[:, 0, :, :] -= 93.5940
|
41 |
+
x_temp[:, 1, :, :] -= 104.7624
|
42 |
+
x_temp[:, 2, :, :] -= 129.1863
|
43 |
+
else:
|
44 |
+
x_temp = x_temp[..., ::-1]
|
45 |
+
x_temp[..., 0] -= 93.5940
|
46 |
+
x_temp[..., 1] -= 104.7624
|
47 |
+
x_temp[..., 2] -= 129.1863
|
48 |
+
|
49 |
+
elif version == 2:
|
50 |
+
if data_format == 'channels_first':
|
51 |
+
x_temp = x_temp[:, ::-1, ...]
|
52 |
+
x_temp[:, 0, :, :] -= 91.4953
|
53 |
+
x_temp[:, 1, :, :] -= 103.8827
|
54 |
+
x_temp[:, 2, :, :] -= 131.0912
|
55 |
+
else:
|
56 |
+
x_temp = x_temp[..., ::-1]
|
57 |
+
x_temp[..., 0] -= 91.4953
|
58 |
+
x_temp[..., 1] -= 103.8827
|
59 |
+
x_temp[..., 2] -= 131.0912
|
60 |
+
else:
|
61 |
+
raise NotImplementedError
|
62 |
+
|
63 |
+
return x_temp
|
64 |
+
|
65 |
+
|
66 |
+
def decode_predictions(preds, top=5):
|
67 |
+
LABELS = None
|
68 |
+
if len(preds.shape) == 2:
|
69 |
+
if preds.shape[1] == 2622:
|
70 |
+
fpath = get_file('rcmalli_vggface_labels_v1.npy',
|
71 |
+
V1_LABELS_PATH,
|
72 |
+
cache_subdir=VGGFACE_DIR)
|
73 |
+
LABELS = np.load(fpath)
|
74 |
+
elif preds.shape[1] == 8631:
|
75 |
+
fpath = get_file('rcmalli_vggface_labels_v2.npy',
|
76 |
+
V2_LABELS_PATH,
|
77 |
+
cache_subdir=VGGFACE_DIR)
|
78 |
+
LABELS = np.load(fpath)
|
79 |
+
else:
|
80 |
+
raise ValueError('`decode_predictions` expects '
|
81 |
+
'a batch of predictions '
|
82 |
+
'(i.e. a 2D array of shape (samples, 2622)) for V1 or '
|
83 |
+
'(samples, 8631) for V2.'
|
84 |
+
'Found array with shape: ' + str(preds.shape))
|
85 |
+
else:
|
86 |
+
raise ValueError('`decode_predictions` expects '
|
87 |
+
'a batch of predictions '
|
88 |
+
'(i.e. a 2D array of shape (samples, 2622)) for V1 or '
|
89 |
+
'(samples, 8631) for V2.'
|
90 |
+
'Found array with shape: ' + str(preds.shape))
|
91 |
+
results = []
|
92 |
+
for pred in preds:
|
93 |
+
top_indices = pred.argsort()[-top:][::-1]
|
94 |
+
result = [[str(LABELS[i].encode('utf8')), pred[i]] for i in top_indices]
|
95 |
+
result.sort(key=lambda x: x[1], reverse=True)
|
96 |
+
results.append(result)
|
97 |
+
return results
|
keras_vggface/version.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = '0.6'
|
2 |
+
|
3 |
+
def pretty_versions():
|
4 |
+
import keras
|
5 |
+
import tensorflow as tf
|
6 |
+
k_version = keras.__version__
|
7 |
+
t_version = tf.__version__
|
8 |
+
return "keras-vggface : {}, keras : {} , tensorflow : {} ".format(__version__,k_version,t_version)
|
keras_vggface/vggface.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''VGGFace models for Keras.
|
2 |
+
|
3 |
+
# Reference:
|
4 |
+
- [Deep Face Recognition](http://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf)
|
5 |
+
- [VGGFace2: A dataset for recognising faces across pose and age](http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/vggface2.pdf)
|
6 |
+
|
7 |
+
'''
|
8 |
+
from __future__ import print_function
|
9 |
+
from keras_vggface.models import RESNET50, VGG16, SENET50
|
10 |
+
|
11 |
+
|
12 |
+
def VGGFace(include_top=True, model='vgg16', weights='vggface',
|
13 |
+
input_tensor=None, input_shape=None,
|
14 |
+
pooling=None,
|
15 |
+
classes=None):
|
16 |
+
"""Instantiates the VGGFace architectures.
|
17 |
+
Optionally loads weights pre-trained
|
18 |
+
on VGGFace datasets. Note that when using TensorFlow,
|
19 |
+
for best performance you should set
|
20 |
+
`image_data_format="channels_last"` in your Keras config
|
21 |
+
at ~/.keras/keras.json.
|
22 |
+
The model and the weights are compatible with both
|
23 |
+
TensorFlow and Theano. The data format
|
24 |
+
convention used by the model is the one
|
25 |
+
specified in your Keras config file.
|
26 |
+
# Arguments
|
27 |
+
include_top: whether to include the 3 fully-connected
|
28 |
+
layers at the top of the network.
|
29 |
+
weights: one of `None` (random initialization)
|
30 |
+
or "vggface" (pre-training on VGGFACE datasets).
|
31 |
+
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
|
32 |
+
to use as image input for the model.
|
33 |
+
model: selects the one of the available architectures
|
34 |
+
vgg16, resnet50 or senet50 default is vgg16.
|
35 |
+
input_shape: optional shape tuple, only to be specified
|
36 |
+
if `include_top` is False (otherwise the input shape
|
37 |
+
has to be `(224, 224, 3)` (with `channels_last` data format)
|
38 |
+
or `(3, 224, 244)` (with `channels_first` data format).
|
39 |
+
It should have exactly 3 inputs channels,
|
40 |
+
and width and height should be no smaller than 48.
|
41 |
+
E.g. `(200, 200, 3)` would be one valid value.
|
42 |
+
pooling: Optional pooling mode for feature extraction
|
43 |
+
when `include_top` is `False`.
|
44 |
+
- `None` means that the output of the model will be
|
45 |
+
the 4D tensor output of the
|
46 |
+
last convolutional layer.
|
47 |
+
- `avg` means that global average pooling
|
48 |
+
will be applied to the output of the
|
49 |
+
last convolutional layer, and thus
|
50 |
+
the output of the model will be a 2D tensor.
|
51 |
+
- `max` means that global max pooling will
|
52 |
+
be applied.
|
53 |
+
classes: optional number of classes to classify images
|
54 |
+
into, only to be specified if `include_top` is True, and
|
55 |
+
if no `weights` argument is specified.
|
56 |
+
# Returns
|
57 |
+
A Keras model instance.
|
58 |
+
# Raises
|
59 |
+
ValueError: in case of invalid argument for `weights`,
|
60 |
+
or invalid input shape.
|
61 |
+
"""
|
62 |
+
|
63 |
+
if weights not in {'vggface', None}:
|
64 |
+
raise ValueError('The `weights` argument should be either '
|
65 |
+
'`None` (random initialization) or `vggface`'
|
66 |
+
'(pre-training on VGGFace Datasets).')
|
67 |
+
|
68 |
+
if model == 'vgg16':
|
69 |
+
|
70 |
+
if classes is None:
|
71 |
+
classes = 2622
|
72 |
+
|
73 |
+
if weights == 'vggface' and include_top and classes != 2622:
|
74 |
+
raise ValueError(
|
75 |
+
'If using `weights` as vggface original with `include_top`'
|
76 |
+
' as true, `classes` should be 2622')
|
77 |
+
|
78 |
+
return VGG16(include_top=include_top, input_tensor=input_tensor,
|
79 |
+
input_shape=input_shape, pooling=pooling,
|
80 |
+
weights=weights,
|
81 |
+
classes=classes)
|
82 |
+
|
83 |
+
|
84 |
+
if model == 'resnet50':
|
85 |
+
|
86 |
+
if classes is None:
|
87 |
+
classes = 8631
|
88 |
+
|
89 |
+
if weights == 'vggface' and include_top and classes != 8631:
|
90 |
+
raise ValueError(
|
91 |
+
'If using `weights` as vggface original with `include_top`'
|
92 |
+
' as true, `classes` should be 8631')
|
93 |
+
|
94 |
+
return RESNET50(include_top=include_top, input_tensor=input_tensor,
|
95 |
+
input_shape=input_shape, pooling=pooling,
|
96 |
+
weights=weights,
|
97 |
+
classes=classes)
|
98 |
+
|
99 |
+
if model == 'senet50':
|
100 |
+
|
101 |
+
if classes is None:
|
102 |
+
classes = 8631
|
103 |
+
|
104 |
+
if weights == 'vggface' and include_top and classes != 8631:
|
105 |
+
raise ValueError(
|
106 |
+
'If using `weights` as vggface original with `include_top`'
|
107 |
+
' as true, `classes` should be 8631')
|
108 |
+
|
109 |
+
return SENET50(include_top=include_top, input_tensor=input_tensor,
|
110 |
+
input_shape=input_shape, pooling=pooling,
|
111 |
+
weights=weights,
|
112 |
+
classes=classes)
|