import os os.system('pip install pyyaml==5.1') os.system('pip install transformers==4.25.1') os.system('pip install sentencepiece') # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) os.system('pip install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html') # install detectron2 that matches pytorch 1.8 os.system('pip install --upgrade detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.8/index.html') ## install PyTesseract os.system('pip install -q pytesseract') import gradio as gr import numpy as np from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification from datasets import load_dataset import torch from PIL import Image, ImageDraw, ImageFont from itertools import chain processor = LayoutXLMProcessor.from_pretrained("amir22010/layoutxlm-xfund-ja") model = LayoutLMv2ForTokenClassification.from_pretrained("amir22010/layoutxlm-xfund-ja",num_labels = 7) # load image example #dataset = load_dataset("ranpox/xfund", 'xfund.ja', split="validation") #image = Image.open(dataset[0]["image"][0]).convert("RGB") image1 = Image.open("./ja_val_49.jpg").convert("RGB") image1.save("document.jpg") # define id2label, label2color labels = [ 'O', 'B-QUESTION', 'B-ANSWER', 'B-HEADER', 'I-ANSWER', 'I-QUESTION', 'I-HEADER' ] id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} def infer(image): # Use this if you're loading images #image = Image.open(img_path).convert("RGB") #image = image.convert("RGB") # loading PDFs try: encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)#max_positional_embeddings offset_mapping = encoding.pop('offset_mapping') outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() width, height = image.size is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction).lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) except Exception as e: print(e) return image title = "Interactive demo: layoutxlm-ja" description = "Demo for Microsoft's layoutxlm-ja, a Transformer for state-of-the-art document image understanding tasks. For More Information - https://huggingface.co/microsoft/layoutxlm-base. This particular model is fine-tuned on XFUND japanese, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'." article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.08836' target='_blank'>LayoutXLM: LayoutXLM is a multilingual variant of LayoutLMv2. Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>" examples =[['document.jpg']] css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" css = ".image-preview {height: auto !important;}" iface = gr.Interface(fn=infer, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image(type="pil", label="annotated image"), title=title, description=description, article=article, examples=examples, css=css, enable_queue=True) iface.launch(debug=True)