LayoutXLM-ja / app.py
amir22010's picture
Update app.py
07f2655
import os
os.system('pip install pyyaml==5.1')
os.system('pip install transformers==4.25.1')
os.system('pip install sentencepiece')
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
os.system('pip install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html')
# install detectron2 that matches pytorch 1.8
os.system('pip install --upgrade detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.8/index.html')
## install PyTesseract
os.system('pip install -q pytesseract')
import gradio as gr
import numpy as np
from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification
from datasets import load_dataset
import torch
from PIL import Image, ImageDraw, ImageFont
from itertools import chain
processor = LayoutXLMProcessor.from_pretrained("amir22010/layoutxlm-xfund-ja")
model = LayoutLMv2ForTokenClassification.from_pretrained("amir22010/layoutxlm-xfund-ja",num_labels = 7)
# load image example
#dataset = load_dataset("ranpox/xfund", 'xfund.ja', split="validation")
#image = Image.open(dataset[0]["image"][0]).convert("RGB")
image1 = Image.open("./ja_val_49.jpg").convert("RGB")
image1.save("document.jpg")
# define id2label, label2color
labels = [
'O',
'B-QUESTION',
'B-ANSWER',
'B-HEADER',
'I-ANSWER',
'I-QUESTION',
'I-HEADER'
]
id2label = {v: k for v, k in enumerate(labels)}
label2id = {k: v for v, k in enumerate(labels)}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
label = label[2:]
if not label:
return 'other'
return label
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
def infer(image):
# Use this if you're loading images
#image = Image.open(img_path).convert("RGB")
#image = image.convert("RGB") # loading PDFs
try:
encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)#max_positional_embeddings
offset_mapping = encoding.pop('offset_mapping')
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction).lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
except Exception as e:
print(e)
return image
title = "Interactive demo: layoutxlm-ja"
description = "Demo for Microsoft's layoutxlm-ja, a Transformer for state-of-the-art document image understanding tasks. For More Information - https://huggingface.co/microsoft/layoutxlm-base. This particular model is fine-tuned on XFUND japanese, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.08836' target='_blank'>LayoutXLM: LayoutXLM is a multilingual variant of LayoutLMv2. Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
examples =[['document.jpg']]
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
css = ".image-preview {height: auto !important;}"
iface = gr.Interface(fn=infer,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True)
iface.launch(debug=True)