Spaces:
Sleeping
Sleeping
File size: 12,141 Bytes
786e078 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import math
import matplotlib.transforms as transforms
import sqlite3
# Import FPSO-specific modules
from reparos.clv import *
from reparos.paz import *
from reparos.dal import *
from reparos.gir import *
# --- UI CONFIG & STYLE ---
st.set_page_config(page_title="Inspekta Deck - FPSO Notifications", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.cdnfonts.com/css/tw-cen-mt');
* {
font-family: 'Tw Cen MT', sans-serif !important;
}
/* Sidebar arrow fix */
section[data-testid="stSidebar"] [data-testid="stSidebarNav"]::before {
content: "βΆ";
font-size: 1.3rem;
margin-right: 0.4rem;
}
/* Fix sidebar expander layout */
section[data-testid="stSidebar"] [data-testid="stExpander"] {
margin-bottom: 1rem;
}
section[data-testid="stSidebar"] [data-testid="stExpander"] [data-testid="stExpanderHeader"] {
padding: 0.5rem 0.75rem;
font-size: 0.9rem;
line-height: 1.2;
word-wrap: break-word;
overflow-wrap: break-word;
}
section[data-testid="stSidebar"] [data-testid="stExpander"] [data-testid="stExpanderContent"] {
padding: 0.5rem 0.75rem;
}
/* Ensure proper spacing for sidebar elements */
section[data-testid="stSidebar"] .stMarkdown {
margin-bottom: 0.5rem;
}
section[data-testid="stSidebar"] .stButton {
margin-top: 0.5rem;
}
/* Ensure sidebar has proper width */
section[data-testid="stSidebar"] {
min-width: 300px;
}
/* Improve expander content readability */
section[data-testid="stSidebar"] [data-testid="stExpander"] .stMarkdown {
font-size: 0.85rem;
line-height: 1.3;
}
section[data-testid="stSidebar"] [data-testid="stExpander"] .stMarkdown p {
margin-bottom: 0.25rem;
}
/* Top-right logo placement - responsive to scrolling */
.logo-container {
position: absolute;
top: 1rem;
right: 2rem;
z-index: 1000;
transition: all 0.3s ease;
}
/* Adjust logo position when scrolling */
.logo-container.scrolled {
position: fixed;
top: 0.5rem;
right: 1rem;
transform: scale(0.8);
}
/* Ensure main content doesn't overlap with logo */
.main .block-container {
padding-top: 2rem !important;
}
/* Smooth transitions for logo */
.logo-container img {
transition: all 0.3s ease;
}
/* Custom styling for better UX */
.stButton > button {
border-radius: 8px;
border: 1px solid #e0e0e0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
font-weight: 500;
transition: all 0.3s ease;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
}
/* Custom styling for metrics */
.metric-container {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
padding: 1rem;
border-radius: 10px;
color: white;
text-align: center;
margin: 0.5rem 0;
}
/* Custom styling for charts */
.chart-container {
background: white;
padding: 1rem;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
margin: 1rem 0;
}
/* Responsive design */
@media (max-width: 768px) {
.logo-container {
position: relative;
top: auto;
right: auto;
text-align: center;
margin-bottom: 1rem;
}
.main .block-container {
padding-top: 1rem !important;
}
}
</style>
""", unsafe_allow_html=True)
# Add logo and title
st.markdown("""
<div class="logo-container">
<h1 style="color: #1f77b4; margin: 0; font-size: 2rem;">π’ Inspekta Deck</h1>
<p style="color: #666; margin: 0; font-size: 1rem;">FPSO Notifications Analysis</p>
</div>
""", unsafe_allow_html=True)
# Main title
st.title("π’ FPSO Notifications Analysis Platform")
st.markdown("---")
# Initialize session state
if 'data_loaded' not in st.session_state:
st.session_state.data_loaded = False
if 'df' not in st.session_state:
st.session_state.df = None
if 'fpsos' not in st.session_state:
st.session_state.fpsos = []
# Sidebar
with st.sidebar:
st.header("π Data Management")
# File upload
uploaded_file = st.file_uploader("Upload Excel file", type=['xlsx', 'xls'])
if uploaded_file is not None:
try:
# Load data
df = pd.read_excel(uploaded_file)
st.session_state.df = df
st.session_state.data_loaded = True
st.session_state.fpsos = df['FPSO'].unique().tolist()
st.success("Data loaded successfully!")
except Exception as e:
st.error(f"Error loading file: {str(e)}")
# Database connection (if available)
if st.button("Load from Database"):
try:
# Try multiple possible database paths
db_paths = [
'reparos/notifs_data.db',
'notifs_data.db',
'./reparos/notifs_data.db',
'../reparos/notifs_data.db'
]
df = None
for db_path in db_paths:
try:
conn = sqlite3.connect(db_path)
df = pd.read_sql_query("SELECT * FROM notifications", conn)
conn.close()
st.success(f"Data loaded from database: {db_path}")
break
except Exception:
continue
if df is not None:
st.session_state.df = df
st.session_state.data_loaded = True
st.session_state.fpsos = df['FPSO'].unique().tolist()
else:
st.error("Database file not found. Please upload an Excel file instead.")
except Exception as e:
st.error(f"Error loading from database: {str(e)}")
if st.session_state.data_loaded:
st.markdown("---")
st.header("π― Analysis Options")
# FPSO selection
selected_fpsos = st.multiselect(
"Select FPSOs to analyze",
st.session_state.fpsos,
default=st.session_state.fpsos[:3] if len(st.session_state.fpsos) >= 3 else st.session_state.fpsos
)
# Date range
if 'Date' in st.session_state.df.columns:
st.session_state.df['Date'] = pd.to_datetime(st.session_state.df['Date'])
min_date = st.session_state.df['Date'].min()
max_date = st.session_state.df['Date'].max()
date_range = st.date_input(
"Select date range",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date
)
# Main content
if st.session_state.data_loaded:
# Create tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"π Overview", "π CLV Analysis", "β‘ PAZ Analysis",
"ποΈ DAL Analysis", "βοΈ GIR Analysis", "π€ RAG Assistant"
])
with tab1:
st.header("π Overview Dashboard")
# Key metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Total Notifications", len(st.session_state.df))
with col2:
st.metric("Unique FPSOs", len(st.session_state.fpsos))
with col3:
if 'Priority' in st.session_state.df.columns:
high_priority = len(st.session_state.df[st.session_state.df['Priority'] == 'High'])
st.metric("High Priority", high_priority)
with col4:
if 'Status' in st.session_state.df.columns:
open_notifications = len(st.session_state.df[st.session_state.df['Status'] == 'Open'])
st.metric("Open Notifications", open_notifications)
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Notifications by FPSO")
fpso_counts = st.session_state.df['FPSO'].value_counts()
fig, ax = plt.subplots(figsize=(10, 6))
fpso_counts.plot(kind='bar', ax=ax)
plt.xticks(rotation=45)
plt.tight_layout()
st.pyplot(fig)
with col2:
if 'Priority' in st.session_state.df.columns:
st.subheader("Notifications by Priority")
priority_counts = st.session_state.df['Priority'].value_counts()
fig, ax = plt.subplots(figsize=(10, 6))
priority_counts.plot(kind='pie', autopct='%1.1f%%', ax=ax)
plt.tight_layout()
st.pyplot(fig)
with tab2:
st.header("π CLV Analysis")
# CLV-specific analysis would go here
st.info("CLV analysis features will be implemented here")
with tab3:
st.header("β‘ PAZ Analysis")
# PAZ-specific analysis would go here
st.info("PAZ analysis features will be implemented here")
with tab4:
st.header("ποΈ DAL Analysis")
# DAL-specific analysis would go here
st.info("DAL analysis features will be implemented here")
with tab5:
st.header("βοΈ GIR Analysis")
# GIR-specific analysis would go here
st.info("GIR analysis features will be implemented here")
with tab6:
st.header("π€ RAG Assistant")
try:
# Import RAG chatbot
from reparos.rag_chatbot import DigiTwinRAG
# Initialize RAG system
if 'rag_system' not in st.session_state:
st.session_state.rag_system = DigiTwinRAG()
# Load data into RAG system
if st.session_state.df is not None:
st.session_state.rag_system.load_notifications_data(st.session_state.df)
# Render chat interface
st.session_state.rag_system.render_chat_interface()
except ImportError:
st.error("RAG module not available. Please install the required dependencies.")
st.code("pip install -r reparos/requirements_rag.txt")
except Exception as e:
st.error(f"Error initializing RAG system: {str(e)}")
else:
st.info("π Please upload an Excel file or load data from database to begin analysis.")
# Show sample data structure
st.subheader("π Expected Data Structure")
st.markdown("""
Your Excel file should contain the following columns:
- **FPSO**: FPSO identifier
- **Date**: Notification date
- **Priority**: Notification priority (High, Medium, Low)
- **Status**: Notification status (Open, Closed, etc.)
- **Description**: Notification description
- **Category**: Notification category
""")
# Show sample data
sample_data = pd.DataFrame({
'FPSO': ['CLV', 'PAZ', 'DAL', 'GIR'],
'Date': ['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04'],
'Priority': ['High', 'Medium', 'Low', 'High'],
'Status': ['Open', 'Closed', 'Open', 'Closed'],
'Description': ['Sample notification 1', 'Sample notification 2', 'Sample notification 3', 'Sample notification 4'],
'Category': ['Safety', 'Maintenance', 'Operations', 'Safety']
})
st.dataframe(sample_data)
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; color: #666; padding: 1rem;">
<p>π’ <strong>Inspekta Deck</strong> - FPSO Notifications Analysis Platform</p>
<p>Built with β€οΈ by ValonyLabs | Powered by Streamlit</p>
</div>
""", unsafe_allow_html=True)
|