Spaces:
Sleeping
Sleeping
| import spaces | |
| import gradio as gr | |
| import os | |
| import sys | |
| from glob import glob | |
| import time | |
| from typing import Any, Union | |
| import numpy as np | |
| import torch | |
| print(f'torch version:{torch.__version__}') | |
| import trimesh | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image | |
| from accelerate.utils import set_seed | |
| import subprocess | |
| import importlib, site, sys | |
| # Re-discover all .pth/.egg-link files | |
| for sitedir in site.getsitepackages(): | |
| site.addsitedir(sitedir) | |
| # Clear caches so importlib will pick up new modules | |
| importlib.invalidate_caches() | |
| # def sh(cmd): subprocess.check_call(cmd, shell=True) | |
| def install_cuda_toolkit(): | |
| CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.6.0/local_installers/cuda_12.6.0_560.28.03_linux.run" | |
| CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
| subprocess.check_call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
| subprocess.check_call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
| subprocess.check_call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
| os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
| os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
| os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
| os.environ["CUDA_HOME"], | |
| "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
| ) | |
| # add for compiler header lookup | |
| os.environ["CPATH"] = f"{os.environ['CUDA_HOME']}/include" + ( | |
| f":{os.environ['CPATH']}" if "CPATH" in os.environ else "" | |
| ) | |
| # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
| # os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0" | |
| print("==> finished installation") | |
| print("installing cuda toolkit") | |
| install_cuda_toolkit() | |
| print("finished") | |
| header_path = "/usr/local/cuda/include/cuda_runtime.h" | |
| print(f"{header_path} exists:", os.path.exists(header_path)) | |
| # my_env = os.environ.copy() | |
| subprocess.run(["pip", "install","diso"], check=True) | |
| # tell Python to re-scan site-packages now that the egg-link exists | |
| import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches() | |
| from src.utils.data_utils import get_colored_mesh_composition, scene_to_parts, load_surfaces | |
| from src.utils.render_utils import render_views_around_mesh, render_normal_views_around_mesh, make_grid_for_images_or_videos, export_renderings | |
| from src.pipelines.pipeline_partcrafter import PartCrafterPipeline | |
| from src.utils.image_utils import prepare_image | |
| from src.models.briarmbg import BriaRMBG | |
| # Constants | |
| MAX_NUM_PARTS = 16 | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| DTYPE = torch.float16 | |
| # Download and initialize models | |
| partcrafter_weights_dir = "pretrained_weights/PartCrafter" | |
| rmbg_weights_dir = "pretrained_weights/RMBG-1.4" | |
| snapshot_download(repo_id="wgsxm/PartCrafter", local_dir=partcrafter_weights_dir) | |
| snapshot_download(repo_id="briaai/RMBG-1.4", local_dir=rmbg_weights_dir) | |
| rmbg_net = BriaRMBG.from_pretrained(rmbg_weights_dir).to(DEVICE) | |
| rmbg_net.eval() | |
| pipe: PartCrafterPipeline = PartCrafterPipeline.from_pretrained(partcrafter_weights_dir).to(DEVICE, DTYPE) | |
| def run_triposg(image: Image.Image, | |
| num_parts: int, | |
| seed: int, | |
| num_tokens: int, | |
| num_inference_steps: int, | |
| guidance_scale: float, | |
| max_num_expanded_coords: float, | |
| use_flash_decoder: bool, | |
| rmbg: bool): | |
| """ | |
| Generate 3D part meshes from an input image. | |
| """ | |
| if rmbg: | |
| img_pil = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net) | |
| else: | |
| img_pil = image | |
| set_seed(seed) | |
| start_time = time.time() | |
| outputs = pipe( | |
| image=[img_pil] * num_parts, | |
| attention_kwargs={"num_parts": num_parts}, | |
| num_tokens=num_tokens, | |
| generator=torch.Generator(device=pipe.device).manual_seed(seed), | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| max_num_expanded_coords=max_num_expanded_coords, | |
| use_flash_decoder=use_flash_decoder, | |
| ).meshes | |
| duration = time.time() - start_time | |
| print(f"Generation time: {duration:.2f}s") | |
| # Ensure no None outputs | |
| for i, mesh in enumerate(outputs): | |
| if mesh is None: | |
| outputs[i] = trimesh.Trimesh(vertices=[[0,0,0]], faces=[[0,0,0]]) | |
| # Merge and color | |
| merged = get_colored_mesh_composition(outputs) | |
| # Export meshes and return results | |
| timestamp = time.strftime("%Y%m%d_%H%M%S") | |
| export_dir = os.path.join("results", timestamp) | |
| os.makedirs(export_dir, exist_ok=True) | |
| for idx, mesh in enumerate(outputs): | |
| mesh.export(os.path.join(export_dir, f"part_{idx:02}.glb")) | |
| merged.export(os.path.join(export_dir, "object.glb")) | |
| return merged, export_dir | |
| # Gradio Interface | |
| def build_demo(): | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# PartCrafter 3D Generation Demo") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image(type="pil", label="Input Image") | |
| num_parts = gr.Slider(1, MAX_NUM_PARTS, value=4, step=1, label="Number of Parts") | |
| seed = gr.Number(value=0, label="Random Seed", precision=0) | |
| num_tokens = gr.Slider(256, 2048, value=1024, step=64, label="Num Tokens") | |
| num_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps") | |
| guidance = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale") | |
| max_coords = gr.Text(value="1e9", label="Max Expanded Coords") | |
| flash_decoder = gr.Checkbox(value=False, label="Use Flash Decoder") | |
| remove_bg = gr.Checkbox(value=False, label="Remove Background (RMBG)") | |
| run_button = gr.Button("Generate 3D Parts") | |
| with gr.Column(scale=1): | |
| output_model = gr.Model3D(label="Merged 3D Object") | |
| output_dir = gr.Textbox(label="Export Directory") | |
| run_button.click(fn=run_triposg, | |
| inputs=[input_image, num_parts, seed, num_tokens, num_steps, | |
| guidance, max_coords, flash_decoder, remove_bg], | |
| outputs=[output_model, output_dir]) | |
| return demo | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.launch() |