Spaces:
Running
on
Zero
Running
on
Zero
Update src/pipeline_pe_clone.py
Browse files- src/pipeline_pe_clone.py +6 -16
src/pipeline_pe_clone.py
CHANGED
|
@@ -48,24 +48,14 @@ def prepare_latent_image_ids_2(height, width, device, dtype):
|
|
| 48 |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x坐标
|
| 49 |
return latent_image_ids
|
| 50 |
|
| 51 |
-
# def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
| 52 |
-
# latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
| 53 |
-
# latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 54 |
-
# latent_image_ids = latent_image_ids.reshape(
|
| 55 |
-
# latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 56 |
-
# )
|
| 57 |
-
# cond_latent_image_ids = latent_image_ids
|
| 58 |
-
# latent_image_ids = torch.concat([latent_image_ids, cond_latent_image_ids], dim=-2)
|
| 59 |
-
# return latent_image_ids
|
| 60 |
-
|
| 61 |
def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
| 62 |
latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
| 63 |
-
|
| 64 |
-
latent_image_ids = latent_image_ids.reshape(
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
latent_image_ids =
|
| 69 |
return latent_image_ids
|
| 70 |
|
| 71 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
|
|
| 48 |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width//2, device=device)[None, :] # x坐标
|
| 49 |
return latent_image_ids
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
def position_encoding_clone(batch_size, original_height, original_width, device, dtype):
|
| 52 |
latent_image_ids = prepare_latent_image_ids_2(original_height, original_width, device, dtype)
|
| 53 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
|
| 54 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 55 |
+
latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 56 |
+
)
|
| 57 |
+
cond_latent_image_ids = latent_image_ids
|
| 58 |
+
latent_image_ids = torch.concat([latent_image_ids, cond_latent_image_ids], dim=-2)
|
| 59 |
return latent_image_ids
|
| 60 |
|
| 61 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|