from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification import gradio as gr import numpy as np import scipy.io.wavfile import tempfile import os from transformers import VitsModel, AutoTokenizer import torch import re import traceback print("Starting application...") # Global variables for models punct_pipe = None model = None tokenizer = None def load_models(): global punct_pipe, model, tokenizer print("Loading punctuation model...") try: punctuation_model_id = "oliverguhr/fullstop-punctuation-multilang-large" punct_tokenizer = AutoTokenizer.from_pretrained(punctuation_model_id) punct_model = AutoModelForTokenClassification.from_pretrained(punctuation_model_id) punct_pipe = pipeline("token-classification", model=punct_model, tokenizer=punct_tokenizer, aggregation_strategy="simple") print("✓ Punctuation model loaded successfully") except Exception as e: print(f"✗ Error loading punctuation model: {e}") punct_pipe = None print("Loading TTS model...") try: model = VitsModel.from_pretrained("facebook/mms-tts-kmr-script_latin") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-kmr-script_latin") print("✓ TTS model loaded successfully") except Exception as e: print(f"✗ Error loading TTS model: {e}") model = None tokenizer = None # Load models at startup load_models() # Simple number-to-Kurmanji-word mapping num2word = { "0": "sifir", "1": "yek", "2": "du", "3": "sê", "4": "çar", "5": "pênc", "6": "şeş", "7": "heft", "8": "heşt", "9": "neh", "10": "deh" } def replace_numbers_with_words(text): def repl(match): num = match.group() return num2word.get(num, num) return re.sub(r'\b\d+\b', repl, text) def restore_punctuation(text): if punct_pipe is None: print("Punctuation model not available, skipping...") return text try: results = punct_pipe(text) punctuated = "" for token in results: word = token['word'] punct = token.get('entity_group', '') if punct == "PERIOD": punctuated += word + ". " elif punct == "COMMA": punctuated += word + ", " else: punctuated += word + " " return punctuated.strip() except Exception as e: print(f"Punctuation error: {e}") return text def text_to_speech(text): print(f"=== TTS Function Called ===") print(f"Input text: '{text}'") try: # Basic validation if not text or text.strip() == "": error_msg = "Please enter some text" print(f"Error: {error_msg}") return None # Check if models are loaded if model is None or tokenizer is None: error_msg = "TTS model not loaded properly" print(f"Error: {error_msg}") return None print("Processing text...") # Process text processed_text = text.strip() # Start simple, skip punctuation for now processed_text = replace_numbers_with_words(processed_text) print(f"Processed text: '{processed_text}'") # Tokenize print("Tokenizing...") inputs = tokenizer(processed_text, return_tensors="pt") print(f"Tokenized successfully, input_ids shape: {inputs['input_ids'].shape}") # Generate audio print("Generating audio...") with torch.no_grad(): output = model(**inputs).waveform print(f"Audio generated, shape: {output.shape}") # Convert to numpy waveform = output.squeeze().numpy() print(f"Waveform shape: {waveform.shape}") # Save to file print("Saving audio file...") tmp_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) tmp_path = tmp_file.name tmp_file.close() scipy.io.wavfile.write( tmp_path, rate=model.config.sampling_rate, data=waveform ) print(f"✓ Audio saved to: {tmp_path}") print("=== TTS Function Completed Successfully ===") return tmp_path except Exception as e: error_msg = f"Error in TTS: {str(e)}" print(f"✗ {error_msg}") print("Full traceback:") traceback.print_exc() return None # Simple test function to verify Gradio is working def test_function(text): print(f"Test function called with: {text}") return f"You entered: {text}" # Create a simple interface first to test print("Creating Gradio interface...") # Option 1: Simple test interface (uncomment to test basic functionality) # interface = gr.Interface( # fn=test_function, # inputs=gr.Textbox(label="Test Input"), # outputs=gr.Textbox(label="Test Output"), # title="Test Interface" # ) # Option 2: Full TTS interface interface = gr.Interface( fn=text_to_speech, inputs=gr.Textbox( label="Enter Kurmanji Text", placeholder="e.g. Silav! Ez bi xêr im.", lines=2, value="" # Default empty value ), outputs=gr.Audio(label="Generated Speech"), title="Kurmanji Text-to-Speech", description="Enter Kurmanji Kurdish text to convert to speech.", examples=[ ["Silav"], ["Ez bi xêr im"], ["Spas"] ], cache_examples=False, flagging_mode="never" ) print("Launching interface...") if __name__ == "__main__": interface.launch( debug=True, share=False, show_error=True, server_name="0.0.0.0" if "SPACE_ID" in os.environ else "127.0.0.1", server_port=7860 )