import gradio as gr import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load the model and tokenizer from Hugging Face model_name = "ambrosfitz/history-qa-t5-base" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def generate_qa(text, max_length=512): input_text = f"Generate question: {text}" input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device) with torch.no_grad(): outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Parse the generated text parts = generated_text.split("Question: ") if len(parts) > 1: qa_parts = parts[1].split("Options:") question = qa_parts[0].strip() options_and_answer = qa_parts[1].split("Correct Answer:") options = options_and_answer[0].strip() answer_and_explanation = options_and_answer[1].split("Explanation:") correct_answer = answer_and_explanation[0].strip() explanation = answer_and_explanation[1].strip() if len(answer_and_explanation) > 1 else "No explanation provided." return f"Question: {question}\n\nOptions: {options}\n\nCorrect Answer: {correct_answer}\n\nExplanation: {explanation}" else: return "Unable to generate a proper question and answer. Please try again with a different input." # Define the Gradio interface iface = gr.Interface( fn=generate_qa, inputs=gr.Textbox(lines=5, label="Enter historical text"), outputs=gr.Textbox(label="Generated Q&A"), title="History Q&A Generator", description="Enter a piece of historical text, and the model will generate a related question, answer options, correct answer, and explanation." ) # Launch the app if __name__ == "__main__": iface.launch()