ambrosfitz commited on
Commit
245997e
·
verified ·
1 Parent(s): 4f9ebaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -59
app.py CHANGED
@@ -1,63 +1,51 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
4
+
5
+ # Load the model and tokenizer from Hugging Face
6
+ model_name = "ambrosfitz/history-qa-t5-base"
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ # Set device
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ model.to(device)
13
+
14
+ def generate_qa(text, max_length=512):
15
+ input_text = f"Generate question: {text}"
16
+ input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device)
17
+
18
+ with torch.no_grad():
19
+ outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
20
+
21
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+
23
+ # Parse the generated text
24
+ parts = generated_text.split("Question: ")
25
+ if len(parts) > 1:
26
+ qa_parts = parts[1].split("Options:")
27
+ question = qa_parts[0].strip()
28
+
29
+ options_and_answer = qa_parts[1].split("Correct Answer:")
30
+ options = options_and_answer[0].strip()
31
+
32
+ answer_and_explanation = options_and_answer[1].split("Explanation:")
33
+ correct_answer = answer_and_explanation[0].strip()
34
+ explanation = answer_and_explanation[1].strip() if len(answer_and_explanation) > 1 else "No explanation provided."
35
+
36
+ return f"Question: {question}\n\nOptions: {options}\n\nCorrect Answer: {correct_answer}\n\nExplanation: {explanation}"
37
+ else:
38
+ return "Unable to generate a proper question and answer. Please try again with a different input."
39
+
40
+ # Define the Gradio interface
41
+ iface = gr.Interface(
42
+ fn=generate_qa,
43
+ inputs=gr.Textbox(lines=5, label="Enter historical text"),
44
+ outputs=gr.Textbox(label="Generated Q&A"),
45
+ title="History Q&A Generator",
46
+ description="Enter a piece of historical text, and the model will generate a related question, answer options, correct answer, and explanation."
 
 
 
 
 
 
 
 
 
 
 
 
47
  )
48
 
49
+ # Launch the app
50
  if __name__ == "__main__":
51
+ iface.launch()