Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
""
|
45 |
-
|
46 |
-
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the model and tokenizer from Hugging Face
|
6 |
+
model_name = "ambrosfitz/history-qa-t5-base"
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Set device
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
def generate_qa(text, max_length=512):
|
15 |
+
input_text = f"Generate question: {text}"
|
16 |
+
input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device)
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7)
|
20 |
+
|
21 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
# Parse the generated text
|
24 |
+
parts = generated_text.split("Question: ")
|
25 |
+
if len(parts) > 1:
|
26 |
+
qa_parts = parts[1].split("Options:")
|
27 |
+
question = qa_parts[0].strip()
|
28 |
+
|
29 |
+
options_and_answer = qa_parts[1].split("Correct Answer:")
|
30 |
+
options = options_and_answer[0].strip()
|
31 |
+
|
32 |
+
answer_and_explanation = options_and_answer[1].split("Explanation:")
|
33 |
+
correct_answer = answer_and_explanation[0].strip()
|
34 |
+
explanation = answer_and_explanation[1].strip() if len(answer_and_explanation) > 1 else "No explanation provided."
|
35 |
+
|
36 |
+
return f"Question: {question}\n\nOptions: {options}\n\nCorrect Answer: {correct_answer}\n\nExplanation: {explanation}"
|
37 |
+
else:
|
38 |
+
return "Unable to generate a proper question and answer. Please try again with a different input."
|
39 |
+
|
40 |
+
# Define the Gradio interface
|
41 |
+
iface = gr.Interface(
|
42 |
+
fn=generate_qa,
|
43 |
+
inputs=gr.Textbox(lines=5, label="Enter historical text"),
|
44 |
+
outputs=gr.Textbox(label="Generated Q&A"),
|
45 |
+
title="History Q&A Generator",
|
46 |
+
description="Enter a piece of historical text, and the model will generate a related question, answer options, correct answer, and explanation."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
+
# Launch the app
|
50 |
if __name__ == "__main__":
|
51 |
+
iface.launch()
|