import streamlit as st
from io import BytesIO
# import gradio as gr
# Def_04 Docx file to translated_Docx file
#from transformers import MarianMTModel, MarianTokenizer
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import LineTokenizer
nltk.download('punkt')
import math
import torch
from docx import Document
from time import sleep
from stqdm import stqdm

import docx
def getText(filename):
    doc = docx.Document(filename)
    fullText = []
    for para in doc.paragraphs:
        fullText.append(para.text)
    return '\n'.join(fullText)
    


 
# mname = 'Helsinki-NLP/opus-mt-en-hi'
# tokenizer = MarianTokenizer.from_pretrained(mname)
# model = MarianMTModel.from_pretrained(mname)
# model.to(device)

#@st.cache
def btTranslator(docxfile):
  if torch.cuda.is_available():  
    dev = "cuda"
  else:  
    dev = "cpu" 
  device = torch.device(dev)
  a=getText(docxfile)
  a1=a.split('\n')
  bigtext='''  '''
  for a in a1:
    bigtext=bigtext+'\n'+a
    
  files=Document()
  
  a="Helsinki-NLP/opus-mt-en-ru"
  b="Helsinki-NLP/opus-mt-ru-fr"
  c="Helsinki-NLP/opus-mt-fr-en"
  # d="Helsinki-NLP/opus-mt-es-en"
  langs=[a,b,c]
  text=bigtext
  
  for _,lang in zip(stqdm(langs),langs):
        st.spinner('Wait for it...')
        sleep(0.5)
        # mname = '/content/drive/MyDrive/Transformers Models/opus-mt-en-hi-Trans Model'
        tokenizer = AutoTokenizer.from_pretrained(lang)
        model = AutoModelForSeq2SeqLM.from_pretrained(lang)
        model.to(device)
        lt = LineTokenizer()
        batch_size = 64
        paragraphs = lt.tokenize(bigtext)   
        translated_paragraphs = []
        
        for _, paragraph in zip(stqdm(paragraphs),paragraphs):
            st.spinner('Wait for it...')
        # ######################################
            sleep(0.5)

        # ######################################
            sentences = sent_tokenize(paragraph)
            batches = math.ceil(len(sentences) / batch_size)     
            translated = []
            for i in range(batches):
                sent_batch = sentences[i*batch_size:(i+1)*batch_size]
                model_inputs = tokenizer(sent_batch, return_tensors="pt", padding=True, truncation=True, max_length=500).to(device)
                with torch.no_grad():
                    translated_batch = model.generate(**model_inputs)
                    translated += translated_batch
                translated = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
                translated_paragraphs += [" ".join(translated)]
                #files.add_paragraph(translated)
        translated_text = "\n".join(translated_paragraphs)
        bigtext=translated_text
  files.add_paragraph(bigtext) 
  #files2save=files.save("Translated.docx")
  #files.save("Translated.docx")
  #binary_output = BytesIO()
  #f=files.save(binary_output)
  #f2=f.getvalue()
  return files


  #return translated_text
st.title('Translator App')
st.markdown("Translate from Docx file")
st.subheader("File Upload")

datas=st.file_uploader("Original File")
name=st.text_input('Enter New File Name: ')
#data=getText("C:\Users\Ambresh C\Desktop\Python Files\Translators\Trail Doc of 500 words.docx")
#if datas :
    #if st.button(label='Data Process'):
binary_output = BytesIO()
if st.button(label='Translate'):
    st.spinner('Waiting...')
    btTranslator(datas).save(binary_output)
    binary_output.getbuffer()
    st.success("Translated")

st.download_button(label='Download Translated File',file_name=(f"{name}_Translated.docx"), data=binary_output.getvalue())
#files.save(f"{name}_Translated.docx")
#else:
 #   st.text('Upload File and Start the process')
        

#f4=binary_output(f3)

#st.sidebar.download_button(label='Download Translated File',file_name='Translated.docx', data=binary_output.getvalue()) 
# st.text_area(label="",value=btTranslator(datas),height=100)
# Footer