File size: 1,106 Bytes
2a7a19d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import torch.nn as nn
from transformers import AutoModel

class TextEncoder(nn.Module):
    def __init__(self, output_dim=64, lang_model="sentence-transformers/all-MiniLM-L6-v2", unfreeze_n_blocks=4):
        super().__init__()
        self.lang_model = lang_model
        self.encoder = AutoModel.from_pretrained(lang_model)
        
        # freeze all parameters
        for param in self.encoder.parameters():
            param.requires_grad = False
        
        # unfreeze the last few encoder layers
        for layer in self.encoder.encoder.layer[ - unfreeze_n_blocks :]:
            for param in layer.parameters():
                param.requires_grad = True
        
        # unfreeze the pooler layer
        for param in self.encoder.pooler.parameters():
            param.requires_grad = True
        
        self.fc = nn.Linear(self.encoder.config.hidden_size, output_dim)
    
    def forward(self, input_ids, attention_mask=None):
        x = self.encoder(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
        x = self.fc(x)
        return x