|
import streamlit as st |
|
import torch |
|
from torchvision import models, transforms |
|
from PIL import Image |
|
import json |
|
import io |
|
|
|
|
|
model = models.resnet50(pretrained=True) |
|
model.eval() |
|
|
|
|
|
def process_image(image): |
|
transform = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize( |
|
mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225] |
|
) |
|
]) |
|
return transform(image).unsqueeze(0) |
|
|
|
def predict_image(image): |
|
input_tensor = process_image(image) |
|
with torch.no_grad(): |
|
output = model(input_tensor) |
|
print(output) |
|
probabilities = torch.nn.functional.softmax(output[0], dim=0) |
|
return probabilities |
|
|
|
def handle_image(image): |
|
st.image(image, caption='Processed Image', use_container_width=True) |
|
probabilities = predict_image(image) |
|
top5_prob, top5_idx = torch.topk(probabilities, 5) |
|
|
|
st.write("Top 5 Predictions:") |
|
for i in range(5): |
|
st.write(f"{class_labels[str(top5_idx[i].item())]}: {top5_prob[i].item()*100:.2f}%") |
|
|
|
|
|
with open('imagenet_classes.json', 'r') as f: |
|
class_labels = json.load(f) |
|
|
|
|
|
st.title("Image Classification with ResNet50") |
|
st.write("Upload an image by dragging and dropping, browsing, or pasting from clipboard (Ctrl+V/Cmd+V).") |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"]) |
|
if uploaded_file is not None: |
|
image = Image.open(uploaded_file).convert('RGB') |
|
handle_image(image) |
|
|