Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,25 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
|
|
|
|
| 7 |
# --- Constants ---
|
| 8 |
-
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/"
|
| 9 |
|
| 10 |
# --- Basic Agent Definition ---
|
| 11 |
-
## This is where you should implement your own agent and tools
|
| 12 |
-
|
| 13 |
class BasicAgent:
|
| 14 |
-
|
| 15 |
-
A very simple agent placeholder.
|
| 16 |
-
It just returns a fixed string for any question.
|
| 17 |
-
"""
|
| 18 |
def __init__(self):
|
| 19 |
print("BasicAgent initialized.")
|
| 20 |
-
# Add any setup if needed
|
| 21 |
-
|
| 22 |
def __call__(self, question: str) -> str:
|
| 23 |
-
"""
|
| 24 |
-
The agent's logic to answer a question.
|
| 25 |
-
This basic version ignores the question content.
|
| 26 |
-
"""
|
| 27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 28 |
-
# Replace this with actual logic if you were building a real agent
|
| 29 |
fixed_answer = "This is a default answer."
|
| 30 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 31 |
return fixed_answer
|
| 32 |
-
|
| 33 |
-
# __repr__ seems intended to get the *source* code, not just representation
|
| 34 |
-
# Let's keep it but note that get_current_script_content might be more robust
|
| 35 |
-
# if the class definition changes significantly or relies on external state.
|
| 36 |
def __repr__(self) -> str:
|
| 37 |
-
""
|
| 38 |
-
Return the source code required to reconstruct this agent.
|
| 39 |
-
NOTE: This might be brittle. Using get_current_script_content is likely safer.
|
| 40 |
-
"""
|
| 41 |
-
imports = [
|
| 42 |
-
"import inspect\n"
|
| 43 |
-
]
|
| 44 |
try:
|
| 45 |
class_source = inspect.getsource(BasicAgent)
|
| 46 |
full_source = "\n".join(imports) + "\n" + class_source
|
|
@@ -51,17 +30,14 @@ class BasicAgent:
|
|
| 51 |
|
| 52 |
# --- Gradio UI and Logic ---
|
| 53 |
def get_current_script_content() -> str:
|
| 54 |
-
|
| 55 |
try:
|
| 56 |
-
# __file__ holds the path to the current script
|
| 57 |
script_path = os.path.abspath(__file__)
|
| 58 |
print(f"Reading script content from: {script_path}")
|
| 59 |
with open(script_path, 'r', encoding='utf-8') as f:
|
| 60 |
return f.read()
|
| 61 |
except NameError:
|
| 62 |
-
# __file__ is not defined (e.g., running in an interactive interpreter or frozen app)
|
| 63 |
print("Warning: __file__ is not defined. Cannot read script content this way.")
|
| 64 |
-
# Fallback or alternative method could be added here if needed
|
| 65 |
return "# Agent code unavailable: __file__ not defined"
|
| 66 |
except FileNotFoundError:
|
| 67 |
print(f"Warning: Script file '{script_path}' not found.")
|
|
@@ -76,17 +52,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 76 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 77 |
and displays the results.
|
| 78 |
"""
|
| 79 |
-
# --- Determine HF Space URL and
|
| 80 |
space_host = os.getenv("SPACE_HOST")
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if space_host:
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
# Print runtime info at the start
|
| 87 |
print("\n" + "="*60)
|
| 88 |
print("Executing run_and_submit_all function...")
|
| 89 |
-
print(
|
|
|
|
|
|
|
| 90 |
# --- End Environment Info ---
|
| 91 |
|
| 92 |
if profile:
|
|
@@ -94,110 +80,80 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 94 |
print(f"User logged in: {username}")
|
| 95 |
else:
|
| 96 |
print("User not logged in.")
|
| 97 |
-
print("="*60 + "\n")
|
| 98 |
-
return "Please Login to Hugging Face with the button.", None
|
| 99 |
|
| 100 |
-
print("="*60 + "\n")
|
| 101 |
|
|
|
|
| 102 |
api_url = DEFAULT_API_URL
|
| 103 |
questions_url = f"{api_url}/questions"
|
| 104 |
submit_url = f"{api_url}/submit"
|
| 105 |
|
| 106 |
-
# 1. Instantiate
|
| 107 |
try:
|
| 108 |
agent = BasicAgent()
|
| 109 |
-
# Using get_current_script_content() is likely more reliable for submission
|
| 110 |
-
# agent_code = agent.__repr__() # Keep if needed, but prefer file content
|
| 111 |
-
# print(f"Agent Code via __repr__ (first 200): {agent_code[:200]}...") # Debug
|
| 112 |
except Exception as e:
|
| 113 |
print(f"Error instantiating agent: {e}")
|
| 114 |
return f"Error initializing agent: {e}", None
|
| 115 |
-
|
| 116 |
-
# Get agent code by reading the current script file - generally more robust
|
| 117 |
agent_code = get_current_script_content()
|
| 118 |
if agent_code.startswith("# Agent code unavailable"):
|
| 119 |
print("Warning: Using potentially incomplete agent code due to reading error.")
|
| 120 |
-
# Optional: Fall back to agent.__repr__() if needed
|
| 121 |
-
# agent_code = agent.__repr__()
|
| 122 |
|
| 123 |
-
# 2. Fetch
|
| 124 |
print(f"Fetching questions from: {questions_url}")
|
| 125 |
try:
|
| 126 |
response = requests.get(questions_url, timeout=15)
|
| 127 |
-
response.raise_for_status()
|
| 128 |
questions_data = response.json()
|
| 129 |
if not questions_data:
|
| 130 |
print("Fetched questions list is empty.")
|
| 131 |
return "Fetched questions list is empty or invalid format.", None
|
| 132 |
print(f"Fetched {len(questions_data)} questions.")
|
| 133 |
-
# status_update = f"Fetched {len(questions_data)} questions. Running agent..." # For yield/streaming
|
| 134 |
except requests.exceptions.RequestException as e:
|
| 135 |
print(f"Error fetching questions: {e}")
|
| 136 |
return f"Error fetching questions: {e}", None
|
| 137 |
except requests.exceptions.JSONDecodeError as e:
|
| 138 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 139 |
-
print(f"Response text: {response.text[:500]}")
|
| 140 |
return f"Error decoding server response for questions: {e}", None
|
| 141 |
-
except Exception as e:
|
| 142 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 143 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 144 |
|
| 145 |
-
# 3. Run Agent
|
| 146 |
-
results_log = []
|
| 147 |
-
answers_payload = []
|
| 148 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 149 |
for item in questions_data:
|
| 150 |
task_id = item.get("task_id")
|
| 151 |
question_text = item.get("question")
|
| 152 |
-
|
| 153 |
if not task_id or question_text is None:
|
| 154 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 155 |
continue
|
| 156 |
-
|
| 157 |
try:
|
| 158 |
-
submitted_answer = agent(question_text)
|
| 159 |
-
answers_payload.append({
|
| 160 |
-
|
| 161 |
-
"submitted_answer": submitted_answer
|
| 162 |
-
})
|
| 163 |
-
results_log.append({
|
| 164 |
-
"Task ID": task_id,
|
| 165 |
-
"Question": question_text,
|
| 166 |
-
"Submitted Answer": submitted_answer
|
| 167 |
-
})
|
| 168 |
except Exception as e:
|
| 169 |
print(f"Error running agent on task {task_id}: {e}")
|
| 170 |
-
results_log.append({
|
| 171 |
-
"Task ID": task_id,
|
| 172 |
-
"Question": question_text,
|
| 173 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
| 174 |
-
})
|
| 175 |
-
# Decide if you want to submit agent errors or skip:
|
| 176 |
-
# answers_payload.append({"task_id": task_id, "submitted_answer": f"AGENT ERROR: {e}"})
|
| 177 |
|
| 178 |
if not answers_payload:
|
| 179 |
print("Agent did not produce any answers to submit.")
|
| 180 |
-
# Still show results log even if nothing submitted
|
| 181 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 182 |
|
| 183 |
# 4. Prepare Submission
|
| 184 |
-
submission_data = {
|
| 185 |
-
"username": username.strip(),
|
| 186 |
-
"agent_code": agent_code, # Using the code read from file
|
| 187 |
-
"answers": answers_payload
|
| 188 |
-
}
|
| 189 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 190 |
print(status_update)
|
| 191 |
|
| 192 |
-
# 5. Submit
|
| 193 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 194 |
try:
|
| 195 |
-
|
| 196 |
-
response = requests.post(submit_url, json=submission_data, timeout=60) # Increased timeout further
|
| 197 |
response.raise_for_status()
|
| 198 |
result_data = response.json()
|
| 199 |
-
|
| 200 |
-
# Prepare final status message and results table
|
| 201 |
final_status = (
|
| 202 |
f"Submission Successful!\n"
|
| 203 |
f"User: {result_data.get('username')}\n"
|
|
@@ -208,19 +164,16 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 208 |
print("Submission successful.")
|
| 209 |
results_df = pd.DataFrame(results_log)
|
| 210 |
return final_status, results_df
|
| 211 |
-
|
| 212 |
except requests.exceptions.HTTPError as e:
|
| 213 |
error_detail = f"Server responded with status {e.response.status_code}."
|
| 214 |
try:
|
| 215 |
-
# Try to get more specific error detail from JSON response body
|
| 216 |
error_json = e.response.json()
|
| 217 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 218 |
except requests.exceptions.JSONDecodeError:
|
| 219 |
-
|
| 220 |
-
error_detail += f" Response: {e.response.text[:500]}" # Limit length
|
| 221 |
status_message = f"Submission Failed: {error_detail}"
|
| 222 |
print(status_message)
|
| 223 |
-
results_df = pd.DataFrame(results_log)
|
| 224 |
return status_message, results_df
|
| 225 |
except requests.exceptions.Timeout:
|
| 226 |
status_message = "Submission Failed: The request timed out."
|
|
@@ -232,7 +185,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 232 |
print(status_message)
|
| 233 |
results_df = pd.DataFrame(results_log)
|
| 234 |
return status_message, results_df
|
| 235 |
-
except Exception as e:
|
| 236 |
status_message = f"An unexpected error occurred during submission: {e}"
|
| 237 |
print(status_message)
|
| 238 |
results_df = pd.DataFrame(results_log)
|
|
@@ -243,7 +196,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 243 |
with gr.Blocks() as demo:
|
| 244 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 245 |
gr.Markdown(
|
| 246 |
-
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. "
|
| 247 |
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
| 248 |
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
| 249 |
)
|
|
@@ -253,28 +206,34 @@ with gr.Blocks() as demo:
|
|
| 253 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 254 |
|
| 255 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 256 |
-
|
|
|
|
| 257 |
|
| 258 |
-
# --- Component Interaction ---
|
| 259 |
-
# Use the profile information directly from the LoginButton state (implicitly passed)
|
| 260 |
run_button.click(
|
| 261 |
fn=run_and_submit_all,
|
| 262 |
-
# Input is implicitly the profile data from LoginButton state
|
| 263 |
outputs=[status_output, results_table]
|
| 264 |
)
|
| 265 |
|
| 266 |
if __name__ == "__main__":
|
| 267 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 268 |
-
# Check for SPACE_HOST at startup for information
|
| 269 |
space_host_startup = os.getenv("SPACE_HOST")
|
|
|
|
|
|
|
| 270 |
if space_host_startup:
|
| 271 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 272 |
-
print(f"
|
| 273 |
else:
|
| 274 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 277 |
|
| 278 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 279 |
-
# Set share=False as the primary access point is the HF Space URL
|
| 280 |
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
+
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
+
# (Keep Constants and BasicAgent class as is)
|
| 8 |
# --- Constants ---
|
| 9 |
+
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/"
|
| 10 |
|
| 11 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
| 12 |
class BasicAgent:
|
| 13 |
+
# ... (keep agent code as is) ...
|
|
|
|
|
|
|
|
|
|
| 14 |
def __init__(self):
|
| 15 |
print("BasicAgent initialized.")
|
|
|
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
| 18 |
fixed_answer = "This is a default answer."
|
| 19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
return fixed_answer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def __repr__(self) -> str:
|
| 22 |
+
imports = ["import inspect\n"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
try:
|
| 24 |
class_source = inspect.getsource(BasicAgent)
|
| 25 |
full_source = "\n".join(imports) + "\n" + class_source
|
|
|
|
| 30 |
|
| 31 |
# --- Gradio UI and Logic ---
|
| 32 |
def get_current_script_content() -> str:
|
| 33 |
+
# ... (keep function as is) ...
|
| 34 |
try:
|
|
|
|
| 35 |
script_path = os.path.abspath(__file__)
|
| 36 |
print(f"Reading script content from: {script_path}")
|
| 37 |
with open(script_path, 'r', encoding='utf-8') as f:
|
| 38 |
return f.read()
|
| 39 |
except NameError:
|
|
|
|
| 40 |
print("Warning: __file__ is not defined. Cannot read script content this way.")
|
|
|
|
| 41 |
return "# Agent code unavailable: __file__ not defined"
|
| 42 |
except FileNotFoundError:
|
| 43 |
print(f"Warning: Script file '{script_path}' not found.")
|
|
|
|
| 52 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 53 |
and displays the results.
|
| 54 |
"""
|
| 55 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 56 |
space_host = os.getenv("SPACE_HOST")
|
| 57 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID
|
| 58 |
+
|
| 59 |
+
hf_runtime_url = "Runtime: Locally or unknown environment (SPACE_HOST not found)"
|
| 60 |
+
hf_repo_url = "HF Repo URL: Unknown (SPACE_ID not found)"
|
| 61 |
+
hf_repo_tree_url = "HF Repo Tree URL: Unknown (SPACE_ID not found)"
|
| 62 |
+
|
| 63 |
if space_host:
|
| 64 |
+
hf_runtime_url = f"Runtime URL: https://{space_host}.hf.space"
|
| 65 |
+
|
| 66 |
+
if space_id: # Construct URLs using SPACE_ID
|
| 67 |
+
hf_repo_url = f"HF Repo URL: https://huggingface.co/spaces/{space_id}"
|
| 68 |
+
hf_repo_tree_url = f"HF Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main"
|
| 69 |
|
| 70 |
+
# Print runtime and repo info at the start
|
| 71 |
print("\n" + "="*60)
|
| 72 |
print("Executing run_and_submit_all function...")
|
| 73 |
+
print(hf_runtime_url) # Print the runtime URL (from SPACE_HOST)
|
| 74 |
+
print(hf_repo_url) # Print the base repo URL (from SPACE_ID)
|
| 75 |
+
print(hf_repo_tree_url) # Print the repo tree URL (from SPACE_ID)
|
| 76 |
# --- End Environment Info ---
|
| 77 |
|
| 78 |
if profile:
|
|
|
|
| 80 |
print(f"User logged in: {username}")
|
| 81 |
else:
|
| 82 |
print("User not logged in.")
|
| 83 |
+
print("="*60 + "\n")
|
| 84 |
+
return "Please Login to Hugging Face with the button.", None
|
| 85 |
|
| 86 |
+
print("="*60 + "\n")
|
| 87 |
|
| 88 |
+
# ... (rest of the function remains the same) ...
|
| 89 |
api_url = DEFAULT_API_URL
|
| 90 |
questions_url = f"{api_url}/questions"
|
| 91 |
submit_url = f"{api_url}/submit"
|
| 92 |
|
| 93 |
+
# 1. Instantiate Agent
|
| 94 |
try:
|
| 95 |
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
| 96 |
except Exception as e:
|
| 97 |
print(f"Error instantiating agent: {e}")
|
| 98 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
| 99 |
agent_code = get_current_script_content()
|
| 100 |
if agent_code.startswith("# Agent code unavailable"):
|
| 101 |
print("Warning: Using potentially incomplete agent code due to reading error.")
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
# 2. Fetch Questions
|
| 104 |
print(f"Fetching questions from: {questions_url}")
|
| 105 |
try:
|
| 106 |
response = requests.get(questions_url, timeout=15)
|
| 107 |
+
response.raise_for_status()
|
| 108 |
questions_data = response.json()
|
| 109 |
if not questions_data:
|
| 110 |
print("Fetched questions list is empty.")
|
| 111 |
return "Fetched questions list is empty or invalid format.", None
|
| 112 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
| 113 |
except requests.exceptions.RequestException as e:
|
| 114 |
print(f"Error fetching questions: {e}")
|
| 115 |
return f"Error fetching questions: {e}", None
|
| 116 |
except requests.exceptions.JSONDecodeError as e:
|
| 117 |
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 118 |
+
print(f"Response text: {response.text[:500]}")
|
| 119 |
return f"Error decoding server response for questions: {e}", None
|
| 120 |
+
except Exception as e:
|
| 121 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 122 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 123 |
|
| 124 |
+
# 3. Run Agent
|
| 125 |
+
results_log = []
|
| 126 |
+
answers_payload = []
|
| 127 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 128 |
for item in questions_data:
|
| 129 |
task_id = item.get("task_id")
|
| 130 |
question_text = item.get("question")
|
|
|
|
| 131 |
if not task_id or question_text is None:
|
| 132 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 133 |
continue
|
|
|
|
| 134 |
try:
|
| 135 |
+
submitted_answer = agent(question_text)
|
| 136 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 137 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
except Exception as e:
|
| 139 |
print(f"Error running agent on task {task_id}: {e}")
|
| 140 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
if not answers_payload:
|
| 143 |
print("Agent did not produce any answers to submit.")
|
|
|
|
| 144 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 145 |
|
| 146 |
# 4. Prepare Submission
|
| 147 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 149 |
print(status_update)
|
| 150 |
|
| 151 |
+
# 5. Submit
|
| 152 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 153 |
try:
|
| 154 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
|
|
|
| 155 |
response.raise_for_status()
|
| 156 |
result_data = response.json()
|
|
|
|
|
|
|
| 157 |
final_status = (
|
| 158 |
f"Submission Successful!\n"
|
| 159 |
f"User: {result_data.get('username')}\n"
|
|
|
|
| 164 |
print("Submission successful.")
|
| 165 |
results_df = pd.DataFrame(results_log)
|
| 166 |
return final_status, results_df
|
|
|
|
| 167 |
except requests.exceptions.HTTPError as e:
|
| 168 |
error_detail = f"Server responded with status {e.response.status_code}."
|
| 169 |
try:
|
|
|
|
| 170 |
error_json = e.response.json()
|
| 171 |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 172 |
except requests.exceptions.JSONDecodeError:
|
| 173 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
|
|
|
| 174 |
status_message = f"Submission Failed: {error_detail}"
|
| 175 |
print(status_message)
|
| 176 |
+
results_df = pd.DataFrame(results_log)
|
| 177 |
return status_message, results_df
|
| 178 |
except requests.exceptions.Timeout:
|
| 179 |
status_message = "Submission Failed: The request timed out."
|
|
|
|
| 185 |
print(status_message)
|
| 186 |
results_df = pd.DataFrame(results_log)
|
| 187 |
return status_message, results_df
|
| 188 |
+
except Exception as e:
|
| 189 |
status_message = f"An unexpected error occurred during submission: {e}"
|
| 190 |
print(status_message)
|
| 191 |
results_df = pd.DataFrame(results_log)
|
|
|
|
| 196 |
with gr.Blocks() as demo:
|
| 197 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 198 |
gr.Markdown(
|
| 199 |
+
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. "
|
| 200 |
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
|
| 201 |
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
|
| 202 |
)
|
|
|
|
| 206 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 207 |
|
| 208 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 209 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 210 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 211 |
|
|
|
|
|
|
|
| 212 |
run_button.click(
|
| 213 |
fn=run_and_submit_all,
|
|
|
|
| 214 |
outputs=[status_output, results_table]
|
| 215 |
)
|
| 216 |
|
| 217 |
if __name__ == "__main__":
|
| 218 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 219 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 220 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 221 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 222 |
+
|
| 223 |
if space_host_startup:
|
| 224 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 225 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 226 |
else:
|
| 227 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 228 |
+
|
| 229 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 230 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 231 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 232 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 233 |
+
else:
|
| 234 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 235 |
+
|
| 236 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 237 |
|
| 238 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
|
|
|
| 239 |
demo.launch(debug=True, share=False)
|