unite mup
Browse files- app.py +6 -0
- requirements.txt +1 -0
- unitemup.py +90 -0
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("unite_mup")
|
6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
unbabel-comet>=2.0.1
|
unitemup.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
|
13 |
+
import os
|
14 |
+
import pathlib
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
import evaluate
|
18 |
+
from huggingface_hub import snapshot_download
|
19 |
+
|
20 |
+
from comet.models.multitask.unified_metric import UnifiedMetric
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@inproceedings{wan-etal-2022-unite,
|
25 |
+
title = "{U}ni{TE}: Unified Translation Evaluation",
|
26 |
+
author = "Wan, Yu and
|
27 |
+
Liu, Dayiheng and
|
28 |
+
Yang, Baosong and
|
29 |
+
Zhang, Haibo and
|
30 |
+
Chen, Boxing and
|
31 |
+
Wong, Derek and
|
32 |
+
Chao, Lidia",
|
33 |
+
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
34 |
+
month = may,
|
35 |
+
year = "2022",
|
36 |
+
address = "Dublin, Ireland",
|
37 |
+
publisher = "Association for Computational Linguistics",
|
38 |
+
url = "https://aclanthology.org/2022.acl-long.558",
|
39 |
+
doi = "10.18653/v1/2022.acl-long.558",
|
40 |
+
pages = "8117--8127",
|
41 |
+
}
|
42 |
+
"""
|
43 |
+
|
44 |
+
|
45 |
+
_DESCRIPTION = """\
|
46 |
+
From https://huggingface.co/Unbabel/unite-mup
|
47 |
+
"""
|
48 |
+
|
49 |
+
class UNITEMUP(evaluate.Metric):
|
50 |
+
def _info(self):
|
51 |
+
return evaluate.MetricInfo(
|
52 |
+
description=_DESCRIPTION,
|
53 |
+
citation=_CITATION,
|
54 |
+
features=datasets.Features(
|
55 |
+
{
|
56 |
+
"predictions": datasets.Value("string"),
|
57 |
+
"references": datasets.Value("string"),
|
58 |
+
}
|
59 |
+
),
|
60 |
+
)
|
61 |
+
|
62 |
+
def _download_and_prepare(self, dl_manager):
|
63 |
+
try:
|
64 |
+
model_checkpoint_path = next(pathlib.Path('./models--Unbabel--unite-mup/').rglob('*.ckpt'))
|
65 |
+
self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path)
|
66 |
+
except:
|
67 |
+
model_path = snapshot_download(repo_id="Unbabel/unite-mup", cache_dir=os.path.abspath(os.path.dirname('.')))
|
68 |
+
model_checkpoint_path = f"{model_path}/checkpoints/model.ckpt"
|
69 |
+
self.model = UnifiedMetric.load_from_checkpoint(model_checkpoint_path)
|
70 |
+
|
71 |
+
|
72 |
+
def _compute(
|
73 |
+
self,
|
74 |
+
predictions,
|
75 |
+
references,
|
76 |
+
data_keys=None,
|
77 |
+
): # Allows user to use either source inputs or reference translations as ground truth.
|
78 |
+
data = [{data_keys[0]: p, data_keys[1]: r} for p, r in zip(predictions, references)]
|
79 |
+
return {"scores": self.model.predict(data, batch_size=8).scores}
|
80 |
+
|
81 |
+
|
82 |
+
def compute_triplet(
|
83 |
+
self,
|
84 |
+
predictions,
|
85 |
+
references,
|
86 |
+
sources,
|
87 |
+
): # Unified scores, uses sources, hypotheses and references.
|
88 |
+
data = [{"src": s, "mt": p, "ref": r} for s, p, r in zip(sources, predictions, references)]
|
89 |
+
return {"scores": self.model.predict(data, batch_size=8).metadata.unified_scores}
|
90 |
+
|