import gradio as gr import torch import matplotlib.pyplot as plt import seaborn as sns import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model and tokenizer once model_name = "alusci/distilbert-smsafe" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, output_attentions=True) model.eval() # Main function def classify_and_plot_attention(text): # Tokenize input inputs = tokenizer(text, return_tensors="pt") # Forward pass with attention with torch.no_grad(): outputs = model(**inputs) # Get prediction logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=-1) pred_idx = torch.argmax(probs).item() pred_label = model.config.id2label[pred_idx] pred_score = round(probs[0, pred_idx].item(), 4) # Extract attention across all layers and heads all_attn = torch.stack(outputs.attentions) # (layers, batch, heads, seq_len, seq_len) mean_attn = all_attn.mean(dim=(0, 2))[0].numpy() # average over layers & heads # Token filtering (remove CLS/SEP) tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) real_token_idxs = [i for i, tok in enumerate(tokens) if tok not in ("[CLS]", "[SEP]")] real_tokens = [tokens[i] for i in real_token_idxs] trimmed_attn = mean_attn[np.ix_(real_token_idxs, real_token_idxs)] # Normalize norm_attn = (trimmed_attn - trimmed_attn.min()) / (trimmed_attn.max() - trimmed_attn.min()) # Plot fig, ax = plt.subplots(figsize=(8, 6)) sns.heatmap(norm_attn, xticklabels=real_tokens, yticklabels=real_tokens, cmap="viridis", square=True, ax=ax, cbar=True) ax.set_title("Normalized Attention Map") ax.set_xlabel("Input Tokens") ax.set_ylabel("Output Tokens") plt.xticks(rotation=45) plt.tight_layout() return f"Prediction: {pred_label} (Score: {pred_score})", fig # Gradio UI demo = gr.Interface( fn=classify_and_plot_attention, inputs=gr.Textbox(lines=3, placeholder="Paste your SMS OTP message here..."), outputs=["text", "plot"], title="SMS OTP Spam Classifier + Attention Visualizer", description="Enter an SMS OTP message to classify it and view the attention matrix.", allow_flagging="never" ) if __name__ == "__main__": demo.launch()