# small script to extract the ligand and save it in a separate file because GNINA will use the ligand position as initial pose
import os

import plotly.express as px
import time
from argparse import FileType, ArgumentParser

import numpy as np
import pandas as pd
import wandb
from biopandas.pdb import PandasPdb
from rdkit import Chem

from tqdm import tqdm

from datasets.pdbbind import read_mol
from datasets.process_mols import read_molecule
from utils.utils import read_strings_from_txt, get_symmetry_rmsd

parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--run_name', type=str, default='gnina_results', help='')
parser.add_argument('--data_dir', type=str, default='data/PDBBind_processed', help='')
parser.add_argument('--results_path', type=str, default='results/user_inference', help='Path to folder with trained model and hyperparameters')
parser.add_argument('--file_suffix', type=str, default='_baseline_ligand.pdb', help='Path to folder with trained model and hyperparameters')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--wandb', action='store_true', default=False, help='')
parser.add_argument('--file_to_exclude', type=str, default=None, help='')
parser.add_argument('--all_dirs_in_results', action='store_true', default=True, help='Evaluate all directories in the results path instead of using directly looking for the names')
parser.add_argument('--num_predictions', type=int, default=10, help='')
parser.add_argument('--no_id_in_filename', action='store_true', default=False, help='')
args = parser.parse_args()

print('Reading paths and names.')
names = read_strings_from_txt(f'data/splits/timesplit_test')
names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
results_path_containments = os.listdir(args.results_path)

if args.wandb:
    wandb.init(
        entity='coarse-graining-mit',
        settings=wandb.Settings(start_method="fork"),
        project=args.project,
        name=args.run_name,
        config=args
    )

all_times = []
successful_names_list = []
rmsds_list = []
centroid_distances_list = []
min_cross_distances_list = []
min_self_distances_list = []
without_rec_overlap_list = []
start_time = time.time()
for i, name in enumerate(tqdm(names)):
    mol = read_mol(args.data_dir, name, remove_hs=True)
    mol = Chem.RemoveAllHs(mol)
    orig_ligand_pos = np.array(mol.GetConformer().GetPositions())

    if args.all_dirs_in_results:
        directory_with_name = [directory for directory in results_path_containments if name in directory][0]
        ligand_pos = []
        for i in range(args.num_predictions):
            file_paths = os.listdir(os.path.join(args.results_path, directory_with_name))
            file_path = [path for path in file_paths if f'rank{i+1}' in path][0]
            if args.file_to_exclude is not None and args.file_to_exclude in file_path: continue
            mol_pred = read_molecule(os.path.join(args.results_path, directory_with_name, file_path),remove_hs=True, sanitize=True)
            mol_pred = Chem.RemoveAllHs(mol_pred)
            ligand_pos.append(mol_pred.GetConformer().GetPositions())
        ligand_pos = np.asarray(ligand_pos)
    else:
        if not os.path.exists(os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}')): raise Exception('path did not exists:', os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}'))
        mol_pred = read_molecule(os.path.join(args.results_path, name, f'{"" if args.no_id_in_filename else name}{args.file_suffix}'), remove_hs=True, sanitize=True)
        if mol_pred == None:
            print("Skipping ", name, ' because RDKIT could not read it.')
            continue
        mol_pred = Chem.RemoveAllHs(mol_pred)
        ligand_pos = np.asarray([np.array(mol_pred.GetConformer(i).GetPositions()) for i in range(args.num_predictions)])
    try:
        rmsd = get_symmetry_rmsd(mol, orig_ligand_pos, [l for l in ligand_pos], mol_pred)
    except Exception as e:
        print("Using non corrected RMSD because of the error:", e)
        rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1))

    rmsds_list.append(rmsd)
    centroid_distances_list.append(np.linalg.norm(ligand_pos.mean(axis=1) - orig_ligand_pos[None,:].mean(axis=1), axis=1))

    rec_path = os.path.join(args.data_dir, name, f'{name}_protein_processed.pdb')
    if not os.path.exists(rec_path):
        rec_path = os.path.join(args.data_dir, name,f'{name}_protein_obabel_reduce.pdb')
    rec = PandasPdb().read_pdb(rec_path)
    rec_df = rec.df['ATOM']
    receptor_pos = rec_df[['x_coord', 'y_coord', 'z_coord']].to_numpy().squeeze().astype(np.float32)
    receptor_pos = np.tile(receptor_pos, (args.num_predictions, 1, 1))

    cross_distances = np.linalg.norm(receptor_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
    self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
    self_distances =  np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
    min_cross_distances_list.append(np.min(cross_distances, axis=(1,2)))
    min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
    successful_names_list.append(name)
    without_rec_overlap_list.append(1 if name in names_no_rec_overlap else 0)
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
    if 'no_overlap_' == overlap:
        without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
        rmsds = np.array(rmsds_list)[without_rec_overlap]
        centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
        min_cross_distances = np.array(min_cross_distances_list)[without_rec_overlap]
        min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
        successful_names = np.array(successful_names_list)[without_rec_overlap]
    else:
        rmsds = np.array(rmsds_list)
        centroid_distances = np.array(centroid_distances_list)
        min_cross_distances = np.array(min_cross_distances_list)
        min_self_distances = np.array(min_self_distances_list)
        successful_names = np.array(successful_names_list)

    np.save(os.path.join(args.results_path, f'{overlap}rmsds.npy'), rmsds)
    np.save(os.path.join(args.results_path, f'{overlap}names.npy'), successful_names)
    np.save(os.path.join(args.results_path, f'{overlap}min_cross_distances.npy'), np.array(min_cross_distances))
    np.save(os.path.join(args.results_path, f'{overlap}min_self_distances.npy'), np.array(min_self_distances))

    performance_metrics.update({
        f'{overlap}steric_clash_fraction': (100 * (min_cross_distances < 0.4).sum() / len(min_cross_distances) / args.num_predictions).__round__(2),
        f'{overlap}self_intersect_fraction': (100 * (min_self_distances < 0.4).sum() / len(min_self_distances) / args.num_predictions).__round__(2),
        f'{overlap}mean_rmsd': rmsds[:,0].mean(),
        f'{overlap}rmsds_below_2': (100 * (rmsds[:,0] < 2).sum() / len(rmsds[:,0])),
        f'{overlap}rmsds_below_5': (100 * (rmsds[:,0] < 5).sum() / len(rmsds[:,0])),
        f'{overlap}rmsds_percentile_25': np.percentile(rmsds[:,0], 25).round(2),
        f'{overlap}rmsds_percentile_50': np.percentile(rmsds[:,0], 50).round(2),
        f'{overlap}rmsds_percentile_75': np.percentile(rmsds[:,0], 75).round(2),

        f'{overlap}mean_centroid': centroid_distances[:,0].mean().__round__(2),
        f'{overlap}centroid_below_2': (100 * (centroid_distances[:,0] < 2).sum() / len(centroid_distances[:,0])).__round__(2),
        f'{overlap}centroid_below_5': (100 * (centroid_distances[:,0] < 5).sum() / len(centroid_distances[:,0])).__round__(2),
        f'{overlap}centroid_percentile_25': np.percentile(centroid_distances[:,0], 25).round(2),
        f'{overlap}centroid_percentile_50': np.percentile(centroid_distances[:,0], 50).round(2),
        f'{overlap}centroid_percentile_75': np.percentile(centroid_distances[:,0], 75).round(2),
    })

    top5_rmsds = np.min(rmsds[:, :5], axis=1)
    top5_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :5], axis=1)][:,0]
    top5_min_cross_distances = min_cross_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :5], axis=1)][:,0]
    top5_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :5], axis=1)][:,0]
    performance_metrics.update({
        f'{overlap}top5_steric_clash_fraction': (100 * (top5_min_cross_distances < 0.4).sum() / len(top5_min_cross_distances)).__round__(2),
        f'{overlap}top5_self_intersect_fraction': (100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
        f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
        f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
        f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
        f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
        f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),

        f'{overlap}top5_centroid_below_2': (100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
        f'{overlap}top5_centroid_below_5': (100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
        f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
        f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
        f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
    })


    top10_rmsds = np.min(rmsds[:, :10], axis=1)
    top10_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :10], axis=1)][:,0]
    top10_min_cross_distances = min_cross_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :10], axis=1)][:,0]
    top10_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:,None],np.argsort(rmsds[:, :10], axis=1)][:,0]
    performance_metrics.update({
        f'{overlap}top10_self_intersect_fraction': (100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
        f'{overlap}top10_steric_clash_fraction': ( 100 * (top10_min_cross_distances < 0.4).sum() / len(top10_min_cross_distances)).__round__(2),
        f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
        f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
        f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
        f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
        f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),

        f'{overlap}top10_centroid_below_2': (100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
        f'{overlap}top10_centroid_below_5': (100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
        f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
        f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
        f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
    })
for k in performance_metrics:
    print(k, performance_metrics[k])

if args.wandb:
    wandb.log(performance_metrics)
    histogram_metrics_list = [('rmsd', rmsds[:,0]),
                              ('centroid_distance', centroid_distances[:,0]),
                              ('mean_rmsd', rmsds[:,0]),
                              ('mean_centroid_distance', centroid_distances[:,0])]
    histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
    histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
    histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
    histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))

    os.makedirs(f'.plotly_cache/baseline_cache', exist_ok=True)
    images = []
    for metric_name, metric in histogram_metrics_list:
        d = {args.results_path: metric}
        df = pd.DataFrame(data=d)
        fig = px.ecdf(df, width=900, height=600, range_x=[0, 40])
        fig.add_vline(x=2, annotation_text='2 A;', annotation_font_size=20, annotation_position="top right",
                      line_dash='dash', line_color='firebrick', annotation_font_color='firebrick')
        fig.add_vline(x=5, annotation_text='5 A;', annotation_font_size=20, annotation_position="top right",
                      line_dash='dash', line_color='green', annotation_font_color='green')
        fig.update_xaxes(title=f'{metric_name} in Angstrom', title_font={"size": 20}, tickfont={"size": 20})
        fig.update_yaxes(title=f'Fraction of predictions with lower error', title_font={"size": 20},
                         tickfont={"size": 20})
        fig.update_layout(autosize=False, margin={'l': 0, 'r': 0, 't': 0, 'b': 0}, plot_bgcolor='white',
                          paper_bgcolor='white', legend_title_text='Method', legend_title_font_size=17,
                          legend=dict(yanchor="bottom", y=0.1, xanchor="right", x=0.99, font=dict(size=17), ), )
        fig.update_xaxes(showgrid=True, gridcolor='lightgrey')
        fig.update_yaxes(showgrid=True, gridcolor='lightgrey')

        fig.write_image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'))
        wandb.log({metric_name: wandb.Image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'), caption=f"{metric_name}")})
        images.append(wandb.Image(os.path.join(f'.plotly_cache/baseline_cache', f'{metric_name}.png'), caption=f"{metric_name}"))
    wandb.log({'images': images})