import gradio as gr import pickle from huggingface_hub import hf_hub_download model_path = hf_hub_download(repo_id="alperugurcan/toxic-model", filename="toxic_model.pkl") vectorizer_path = hf_hub_download(repo_id="alperugurcan/toxic-model", filename="toxic_vectorizer.pkl") model = pickle.load(open(model_path, 'rb')) vectorizer = pickle.load(open(vectorizer_path, 'rb')) def predict(text): features = vectorizer.transform([text.lower()]) predictions = model.predict_proba(features) labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate'] return {label: float(pred[0][1]) for label, pred in zip(labels, predictions)} iface = gr.Interface( fn=predict, inputs="text", outputs="label", title="Toxic Comment Classifier" ) iface.launch()