alperugurcan commited on
Commit
7b97e29
·
verified ·
1 Parent(s): e560ddf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import tensorflow as tf
3
+ import pickle
4
+ import numpy as np
5
+ from tensorflow.keras.preprocessing.sequence import pad_sequences
6
+
7
+ # Load the model and tokenizer
8
+ model = tf.keras.models.load_model('sentiment_model.keras')
9
+
10
+ with open('tokenizer.pickle', 'rb') as handle:
11
+ tokenizer = pickle.load(handle)
12
+
13
+ with open('max_length.txt', 'r') as f:
14
+ max_length = int(f.read())
15
+
16
+ def classify_sentence(sentence):
17
+ seq = tokenizer.texts_to_sequences([sentence])
18
+ padded_seq = pad_sequences(seq, maxlen=max_length)
19
+ prediction = model.predict(padded_seq)
20
+ label = "Positive" if prediction[0][0] > 0.5 else "Negative"
21
+ return label
22
+
23
+ # Streamlit UI
24
+ st.title("Restaurant Review Sentiment Analysis")
25
+ st.write("Enter your review in Turkish to analyze its sentiment")
26
+
27
+ user_input = st.text_area("Enter your review:")
28
+
29
+ if st.button("Analyze"):
30
+ if user_input:
31
+ result = classify_sentence(user_input)
32
+ st.write(f"Sentiment: {result}")
33
+ else:
34
+ st.write("Please enter a review to analyze")