Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import pickle
|
4 |
+
import numpy as np
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model = tf.keras.models.load_model('sentiment_model.keras')
|
9 |
+
|
10 |
+
with open('tokenizer.pickle', 'rb') as handle:
|
11 |
+
tokenizer = pickle.load(handle)
|
12 |
+
|
13 |
+
with open('max_length.txt', 'r') as f:
|
14 |
+
max_length = int(f.read())
|
15 |
+
|
16 |
+
def classify_sentence(sentence):
|
17 |
+
seq = tokenizer.texts_to_sequences([sentence])
|
18 |
+
padded_seq = pad_sequences(seq, maxlen=max_length)
|
19 |
+
prediction = model.predict(padded_seq)
|
20 |
+
label = "Positive" if prediction[0][0] > 0.5 else "Negative"
|
21 |
+
return label
|
22 |
+
|
23 |
+
# Streamlit UI
|
24 |
+
st.title("Restaurant Review Sentiment Analysis")
|
25 |
+
st.write("Enter your review in Turkish to analyze its sentiment")
|
26 |
+
|
27 |
+
user_input = st.text_area("Enter your review:")
|
28 |
+
|
29 |
+
if st.button("Analyze"):
|
30 |
+
if user_input:
|
31 |
+
result = classify_sentence(user_input)
|
32 |
+
st.write(f"Sentiment: {result}")
|
33 |
+
else:
|
34 |
+
st.write("Please enter a review to analyze")
|