Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
# Load the tokenizer and model | |
model_name = "alpcansoydas/product-model-18.10.24-bert-total27label_ifhavemorethan100sampleperfamily" | |
tokenizer_name = "bert-base-uncased" | |
# Initialize tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Create a pipeline for text classification | |
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
# Function to classify input text | |
def classify_product_family(text): | |
results = classifier(text) | |
predicted_label = results[0]['label'] | |
return f"{predicted_label}" | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Product Family Classifier") | |
gr.Markdown("Classify product descriptions into one of 27 family labels.") | |
input_text = gr.Textbox(label="Enter Product Description", placeholder="Type product description here...") | |
output_label = gr.Textbox(label="Predicted Family Label") | |
classify_button = gr.Button("Classify") | |
classify_button.click(fn=classify_product_family, inputs=input_text, outputs=output_label) | |
# Launch the Gradio interface | |
demo.launch() | |