Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from langchain.prompts import PromptTemplate
|
| 3 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 4 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 5 |
+
from langdetect import detect
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
# Initialize the LLM and other components
|
| 9 |
+
llm = HuggingFaceEndpoint(
|
| 10 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
| 11 |
+
task="text-generation",
|
| 12 |
+
max_new_tokens=4096,
|
| 13 |
+
temperature=0.5,
|
| 14 |
+
do_sample=False,
|
| 15 |
+
)
|
| 16 |
+
llm_engine_hf = ChatHuggingFace(llm=llm)
|
| 17 |
+
|
| 18 |
+
template_classify = '''
|
| 19 |
+
Please carefully read the following text. The text is written in {LANG} language:
|
| 20 |
+
|
| 21 |
+
<text>
|
| 22 |
+
{TEXT}
|
| 23 |
+
</text>
|
| 24 |
+
|
| 25 |
+
After reading it, I want you to classify it in three groups: Positive, Negative, or Neutral.
|
| 26 |
+
Your final response MUST contain only the response, no other text.
|
| 27 |
+
Example:
|
| 28 |
+
Positive
|
| 29 |
+
Negative
|
| 30 |
+
Neutral
|
| 31 |
+
'''
|
| 32 |
+
|
| 33 |
+
template_json = '''
|
| 34 |
+
Your task is to read the following text, convert it to json format using 'Answer' as key and return it.
|
| 35 |
+
<text>
|
| 36 |
+
{RESPONSE}
|
| 37 |
+
</text>
|
| 38 |
+
|
| 39 |
+
Your final response MUST contain only the response, no other text.
|
| 40 |
+
Example:
|
| 41 |
+
{{"Answer":"Positive"}}
|
| 42 |
+
'''
|
| 43 |
+
json_output_parser = JsonOutputParser()
|
| 44 |
+
|
| 45 |
+
# Define the classify_text function
|
| 46 |
+
def classify_text(text):
|
| 47 |
+
global llm
|
| 48 |
+
|
| 49 |
+
start = time.time()
|
| 50 |
+
lang = detect(text)
|
| 51 |
+
|
| 52 |
+
prompt_classify = PromptTemplate(
|
| 53 |
+
template=template_classify,
|
| 54 |
+
input_variables=["LANG", "TEXT"]
|
| 55 |
+
)
|
| 56 |
+
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
|
| 57 |
+
classify = llm.invoke(formatted_prompt)
|
| 58 |
+
|
| 59 |
+
prompt_json = PromptTemplate(
|
| 60 |
+
template=template_json,
|
| 61 |
+
input_variables=["RESPONSE"]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
formatted_prompt = template_json.format(RESPONSE=classify)
|
| 65 |
+
response = llm.invoke(formatted_prompt)
|
| 66 |
+
|
| 67 |
+
parsed_output = json_output_parser.parse(response)
|
| 68 |
+
end = time.time()
|
| 69 |
+
duration = end - start
|
| 70 |
+
return parsed_output, duration #['Answer']
|
| 71 |
+
|
| 72 |
+
# Create the Gradio interface
|
| 73 |
+
def gradio_app(text):
|
| 74 |
+
classification, time_taken = classify_text(text)
|
| 75 |
+
return classification, f"Time taken: {time_taken:.2f} seconds"
|
| 76 |
+
|
| 77 |
+
def create_gradio_interface():
|
| 78 |
+
with gr.Blocks() as iface:
|
| 79 |
+
text_input = gr.Textbox(label="Text to Classify")
|
| 80 |
+
output_text = gr.Textbox(label="Classification")
|
| 81 |
+
time_taken = gr.Textbox(label="Time Taken (seconds)")
|
| 82 |
+
submit_btn = gr.Button("Classify")
|
| 83 |
+
|
| 84 |
+
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken])
|
| 85 |
+
|
| 86 |
+
iface.launch()
|
| 87 |
+
|
| 88 |
+
if __name__ == "__main__":
|
| 89 |
+
create_gradio_interface()
|