Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,3 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# import torch
|
| 3 |
-
# from transformers import pipeline, AutoTokenizer
|
| 4 |
-
# from nemo.collections.asr.models import EncDecMultiTaskModel
|
| 5 |
-
|
| 6 |
-
# # load model
|
| 7 |
-
# canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b')
|
| 8 |
-
|
| 9 |
-
# # update dcode params
|
| 10 |
-
# decode_cfg = canary_model.cfg.decoding
|
| 11 |
-
# decode_cfg.beam.beam_size = 1
|
| 12 |
-
# canary_model.change_decoding_strategy(decode_cfg)
|
| 13 |
-
|
| 14 |
-
# pipe = pipeline(
|
| 15 |
-
# "automatic-speech-recognition",
|
| 16 |
-
# model="nvidia/canary-1b"
|
| 17 |
-
# )
|
| 18 |
-
|
| 19 |
-
# # pipe = pipeline(
|
| 20 |
-
# # "text-generation",
|
| 21 |
-
# # model="QuantFactory/Meta-Llama-3-8B-Instruct-GGUF",
|
| 22 |
-
# # model_kwargs={"torch_dtype": torch.bfloat16},
|
| 23 |
-
# # device_map="auto"
|
| 24 |
-
# # )
|
| 25 |
-
|
| 26 |
-
# gr.Interface.from_pipeline(pipe,
|
| 27 |
-
# title="ASR",
|
| 28 |
-
# description="Using pipeline with Canary-1B",
|
| 29 |
-
# ).launch(inbrowser=True)
|
| 30 |
-
|
| 31 |
import gradio as gr
|
| 32 |
import json
|
| 33 |
import librosa
|
|
@@ -171,6 +141,104 @@ def transcribe(audio_filepath, src_lang, tgt_lang, pnc):
|
|
| 171 |
|
| 172 |
return output_text
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
with gr.Blocks(
|
| 175 |
title="NeMo Canary Model",
|
| 176 |
css="""
|
|
@@ -230,32 +298,32 @@ with gr.Blocks(
|
|
| 230 |
elem_id="model_output_text_box",
|
| 231 |
)
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
|
| 260 |
|
| 261 |
demo.queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
| 3 |
import librosa
|
|
|
|
| 141 |
|
| 142 |
return output_text
|
| 143 |
|
| 144 |
+
# add logic to make sure dropdown menus only suggest valid combos
|
| 145 |
+
def on_src_or_tgt_lang_change(src_lang_value, tgt_lang_value, pnc_value):
|
| 146 |
+
"""Callback function for when src_lang or tgt_lang dropdown menus are changed.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
src_lang_value(string), tgt_lang_value (string), pnc_value(bool) - the current
|
| 150 |
+
chosen "values" of each Gradio component
|
| 151 |
+
Returns:
|
| 152 |
+
src_lang, tgt_lang, pnc - these are the new Gradio components that will be displayed
|
| 153 |
+
|
| 154 |
+
Note: I found the required logic is easier to understand if you think about the possible src & tgt langs as
|
| 155 |
+
a matrix, e.g. with English, Spanish, French, German as the langs, and only transcription in the same language,
|
| 156 |
+
and X -> English and English -> X translation being allowed, the matrix looks like the diagram below ("Y" means it is
|
| 157 |
+
allowed to go into that state).
|
| 158 |
+
It is easier to understand the code if you think about which state you are in, given the current src_lang_value and
|
| 159 |
+
tgt_lang_value, and then which states you can go to from there.
|
| 160 |
+
|
| 161 |
+
tgt lang
|
| 162 |
+
- |EN |ES |FR |DE
|
| 163 |
+
------------------
|
| 164 |
+
EN| Y | Y | Y | Y
|
| 165 |
+
------------------
|
| 166 |
+
src ES| Y | Y | |
|
| 167 |
+
lang ------------------
|
| 168 |
+
FR| Y | | Y |
|
| 169 |
+
------------------
|
| 170 |
+
DE| Y | | | Y
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
if src_lang_value == "English" and tgt_lang_value == "English":
|
| 174 |
+
# src_lang and tgt_lang can go anywhere
|
| 175 |
+
src_lang = gr.Dropdown(
|
| 176 |
+
choices=["English", "Spanish", "French", "German"],
|
| 177 |
+
value=src_lang_value,
|
| 178 |
+
label="Input audio is spoken in:"
|
| 179 |
+
)
|
| 180 |
+
tgt_lang = gr.Dropdown(
|
| 181 |
+
choices=["English", "Spanish", "French", "German"],
|
| 182 |
+
value=tgt_lang_value,
|
| 183 |
+
label="Transcribe in language:"
|
| 184 |
+
)
|
| 185 |
+
elif src_lang_value == "English":
|
| 186 |
+
# src is English & tgt is non-English
|
| 187 |
+
# => src can only be English or current tgt_lang_values
|
| 188 |
+
# & tgt can be anything
|
| 189 |
+
src_lang = gr.Dropdown(
|
| 190 |
+
choices=["English", tgt_lang_value],
|
| 191 |
+
value=src_lang_value,
|
| 192 |
+
label="Input audio is spoken in:"
|
| 193 |
+
)
|
| 194 |
+
tgt_lang = gr.Dropdown(
|
| 195 |
+
choices=["English", "Spanish", "French", "German"],
|
| 196 |
+
value=tgt_lang_value,
|
| 197 |
+
label="Transcribe in language:"
|
| 198 |
+
)
|
| 199 |
+
elif tgt_lang_value == "English":
|
| 200 |
+
# src is non-English & tgt is English
|
| 201 |
+
# => src can be anything
|
| 202 |
+
# & tgt can only be English or current src_lang_value
|
| 203 |
+
src_lang = gr.Dropdown(
|
| 204 |
+
choices=["English", "Spanish", "French", "German"],
|
| 205 |
+
value=src_lang_value,
|
| 206 |
+
label="Input audio is spoken in:"
|
| 207 |
+
)
|
| 208 |
+
tgt_lang = gr.Dropdown(
|
| 209 |
+
choices=["English", src_lang_value],
|
| 210 |
+
value=tgt_lang_value,
|
| 211 |
+
label="Transcribe in language:"
|
| 212 |
+
)
|
| 213 |
+
else:
|
| 214 |
+
# both src and tgt are non-English
|
| 215 |
+
# => both src and tgt can only be switch to English or themselves
|
| 216 |
+
src_lang = gr.Dropdown(
|
| 217 |
+
choices=["English", src_lang_value],
|
| 218 |
+
value=src_lang_value,
|
| 219 |
+
label="Input audio is spoken in:"
|
| 220 |
+
)
|
| 221 |
+
tgt_lang = gr.Dropdown(
|
| 222 |
+
choices=["English", tgt_lang_value],
|
| 223 |
+
value=tgt_lang_value,
|
| 224 |
+
label="Transcribe in language:"
|
| 225 |
+
)
|
| 226 |
+
# let pnc be anything if src_lang_value == tgt_lang_value, else fix to True
|
| 227 |
+
if src_lang_value == tgt_lang_value:
|
| 228 |
+
pnc = gr.Checkbox(
|
| 229 |
+
value=pnc_value,
|
| 230 |
+
label="Punctuation & Capitalization in transcript?",
|
| 231 |
+
interactive=True
|
| 232 |
+
)
|
| 233 |
+
else:
|
| 234 |
+
pnc = gr.Checkbox(
|
| 235 |
+
value=True,
|
| 236 |
+
label="Punctuation & Capitalization in transcript?",
|
| 237 |
+
interactive=False
|
| 238 |
+
)
|
| 239 |
+
return src_lang, tgt_lang, pnc
|
| 240 |
+
|
| 241 |
+
|
| 242 |
with gr.Blocks(
|
| 243 |
title="NeMo Canary Model",
|
| 244 |
css="""
|
|
|
|
| 298 |
elem_id="model_output_text_box",
|
| 299 |
)
|
| 300 |
|
| 301 |
+
with gr.Row():
|
| 302 |
+
|
| 303 |
+
gr.HTML(
|
| 304 |
+
"<p style='text-align: center'>"
|
| 305 |
+
"π€ <a href='https://huggingface.co/nvidia/canary-1b' target='_blank'>Canary model</a> | "
|
| 306 |
+
"π§βπ» <a href='https://github.com/NVIDIA/NeMo' target='_blank'>NeMo Repository</a>"
|
| 307 |
+
"</p>"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
go_button.click(
|
| 311 |
+
fn=transcribe,
|
| 312 |
+
inputs = [audio_file, src_lang, tgt_lang, pnc],
|
| 313 |
+
outputs = [model_output_text_box]
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# call on_src_or_tgt_lang_change whenever src_lang or tgt_lang dropdown menus are changed
|
| 317 |
+
src_lang.change(
|
| 318 |
+
fn=on_src_or_tgt_lang_change,
|
| 319 |
+
inputs=[src_lang, tgt_lang, pnc],
|
| 320 |
+
outputs=[src_lang, tgt_lang, pnc],
|
| 321 |
+
)
|
| 322 |
+
tgt_lang.change(
|
| 323 |
+
fn=on_src_or_tgt_lang_change,
|
| 324 |
+
inputs=[src_lang, tgt_lang, pnc],
|
| 325 |
+
outputs=[src_lang, tgt_lang, pnc],
|
| 326 |
+
)
|
| 327 |
|
| 328 |
|
| 329 |
demo.queue()
|