|
|
|
"""Converts a Whisper model in OpenAI format to Hugging Face format.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import io |
|
import json |
|
import os |
|
import tempfile |
|
import urllib |
|
import warnings |
|
from typing import Any, List, Optional, Tuple |
|
|
|
import torch |
|
from huggingface_hub.utils import insecure_hashlib |
|
from torch import nn |
|
from tqdm import tqdm |
|
|
|
from transformers import ( |
|
GenerationConfig, |
|
WhisperConfig, |
|
WhisperFeatureExtractor, |
|
WhisperForConditionalGeneration, |
|
WhisperProcessor, |
|
WhisperTokenizer, |
|
WhisperTokenizerFast, |
|
) |
|
from transformers.models.whisper.tokenization_whisper import LANGUAGES, bytes_to_unicode |
|
from transformers.utils.import_utils import _is_package_available |
|
|
|
|
|
_MODELS = { |
|
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", |
|
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", |
|
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", |
|
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", |
|
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", |
|
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", |
|
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", |
|
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", |
|
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", |
|
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", |
|
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt", |
|
} |
|
|
|
|
|
_TOKENIZERS = { |
|
"multilingual": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/multilingual.tiktoken", |
|
"english": "https://raw.githubusercontent.com/openai/whisper/main/whisper/assets/gpt2.tiktoken", |
|
} |
|
|
|
|
|
def _get_generation_config( |
|
is_multilingual: bool, |
|
num_languages: int = 100, |
|
openai_version: Optional[str] = None, |
|
) -> GenerationConfig: |
|
""" |
|
Loads the appropriate generation config from HF repo |
|
""" |
|
if openai_version is not None: |
|
repo = f"openai/whisper-{openai_version}" |
|
elif not is_multilingual: |
|
repo = "openai/whisper-medium.en" |
|
elif num_languages < 100: |
|
repo = "openai/whisper-large-v2" |
|
else: |
|
repo = "openai/whisper-large-v3" |
|
|
|
gen_cfg = GenerationConfig.from_pretrained(repo) |
|
if openai_version is None: |
|
gen_cfg.alignment_heads = None |
|
warnings.warn( |
|
"Alignment heads have not been included in the generation config, since they are available " |
|
"only for the original OpenAI checkpoints." |
|
"If you want to use word-level timestamps with a custom version of Whisper," |
|
"see https://github.com/openai/whisper/blob/main/notebooks/Multilingual_ASR.ipynb" |
|
"for the example of how to produce word-level timestamps manually." |
|
) |
|
|
|
return gen_cfg |
|
|
|
|
|
def remove_ignore_keys_(state_dict): |
|
ignore_keys = ["layers", "blocks"] |
|
for k in ignore_keys: |
|
state_dict.pop(k, None) |
|
|
|
|
|
WHISPER_MAPPING = { |
|
"blocks": "layers", |
|
"mlp.0": "fc1", |
|
"mlp.2": "fc2", |
|
"mlp_ln": "final_layer_norm", |
|
".attn.query": ".self_attn.q_proj", |
|
".attn.key": ".self_attn.k_proj", |
|
".attn.value": ".self_attn.v_proj", |
|
".attn_ln": ".self_attn_layer_norm", |
|
".attn.out": ".self_attn.out_proj", |
|
".cross_attn.query": ".encoder_attn.q_proj", |
|
".cross_attn.key": ".encoder_attn.k_proj", |
|
".cross_attn.value": ".encoder_attn.v_proj", |
|
".cross_attn_ln": ".encoder_attn_layer_norm", |
|
".cross_attn.out": ".encoder_attn.out_proj", |
|
"decoder.ln.": "decoder.layer_norm.", |
|
"encoder.ln.": "encoder.layer_norm.", |
|
"token_embedding": "embed_tokens", |
|
"encoder.positional_embedding": "encoder.embed_positions.weight", |
|
"decoder.positional_embedding": "decoder.embed_positions.weight", |
|
"ln_post": "layer_norm", |
|
} |
|
|
|
|
|
def rename_keys(s_dict): |
|
keys = list(s_dict.keys()) |
|
for key in keys: |
|
new_key = key |
|
for k, v in WHISPER_MAPPING.items(): |
|
if k in key: |
|
new_key = new_key.replace(k, v) |
|
|
|
print(f"{key} -> {new_key}") |
|
|
|
s_dict[new_key] = s_dict.pop(key) |
|
return s_dict |
|
|
|
|
|
def make_linear_from_emb(emb): |
|
vocab_size, emb_size = emb.weight.shape |
|
lin_layer = nn.Linear(vocab_size, emb_size, bias=False) |
|
lin_layer.weight.data = emb.weight.data |
|
return lin_layer |
|
|
|
|
|
def _download(url: str, root: str) -> Any: |
|
os.makedirs(root, exist_ok=True) |
|
filename = os.path.basename(url) |
|
|
|
expected_sha256 = url.split("/")[-2] |
|
download_target = os.path.join(root, filename) |
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
raise RuntimeError(f"{download_target} exists and is not a regular file") |
|
|
|
if os.path.isfile(download_target): |
|
model_bytes = open(download_target, "rb").read() |
|
if insecure_hashlib.sha256(model_bytes).hexdigest() == expected_sha256: |
|
return torch.load(io.BytesIO(model_bytes)) |
|
else: |
|
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") |
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |
|
with tqdm( |
|
total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024 |
|
) as loop: |
|
while True: |
|
buffer = source.read(8192) |
|
if not buffer: |
|
break |
|
|
|
output.write(buffer) |
|
loop.update(len(buffer)) |
|
|
|
model_bytes = open(download_target, "rb").read() |
|
if insecure_hashlib.sha256(model_bytes).hexdigest() != expected_sha256: |
|
raise RuntimeError( |
|
"Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." |
|
) |
|
|
|
return torch.load(io.BytesIO(model_bytes)) |
|
|
|
|
|
def convert_openai_whisper_to_tfms( |
|
checkpoint_path, pytorch_dump_folder_path |
|
) -> Tuple[WhisperForConditionalGeneration, bool, int]: |
|
if ".pt" not in checkpoint_path: |
|
root = os.path.dirname(pytorch_dump_folder_path) or "." |
|
original_checkpoint = _download(_MODELS[checkpoint_path], root) |
|
openai_version = checkpoint_path |
|
else: |
|
original_checkpoint = torch.load(checkpoint_path, map_location="cpu") |
|
openai_version = None |
|
|
|
dimensions = original_checkpoint["dims"] |
|
state_dict = original_checkpoint["model_state_dict"] |
|
proj_out_weights = state_dict["decoder.token_embedding.weight"] |
|
remove_ignore_keys_(state_dict) |
|
rename_keys(state_dict) |
|
tie_embeds = True |
|
ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0] |
|
|
|
|
|
endoftext_id = 50257 if dimensions["n_vocab"] > 51865 else 50256 |
|
|
|
config = WhisperConfig( |
|
vocab_size=dimensions["n_vocab"], |
|
encoder_ffn_dim=ffn_dim, |
|
decoder_ffn_dim=ffn_dim, |
|
num_mel_bins=dimensions["n_mels"], |
|
d_model=dimensions["n_audio_state"], |
|
max_target_positions=dimensions["n_text_ctx"], |
|
encoder_layers=dimensions["n_audio_layer"], |
|
encoder_attention_heads=dimensions["n_audio_head"], |
|
decoder_layers=dimensions["n_text_layer"], |
|
decoder_attention_heads=dimensions["n_text_head"], |
|
max_source_positions=dimensions["n_audio_ctx"], |
|
eos_token_id=endoftext_id, |
|
bos_token_id=endoftext_id, |
|
pad_token_id=endoftext_id, |
|
decoder_start_token_id=endoftext_id + 1, |
|
) |
|
|
|
model = WhisperForConditionalGeneration(config) |
|
missing, unexpected = model.model.load_state_dict(state_dict, strict=False) |
|
if len(missing) > 0 and not set(missing) <= { |
|
"encoder.embed_positions.weights", |
|
"decoder.embed_positions.weights", |
|
}: |
|
raise ValueError( |
|
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," |
|
f" but all the following weights are missing {missing}" |
|
) |
|
|
|
if tie_embeds: |
|
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens) |
|
else: |
|
model.proj_out.weight.data = proj_out_weights |
|
|
|
|
|
is_multilingual = model.config.vocab_size >= 51865 |
|
num_languages = model.config.vocab_size - 51765 - int(is_multilingual) |
|
|
|
model.generation_config = _get_generation_config( |
|
is_multilingual, |
|
num_languages, |
|
openai_version, |
|
) |
|
|
|
return model, is_multilingual, num_languages |
|
|
|
|
|
|
|
def _bpe(mergeable_ranks, token: bytes, max_rank=None) -> List[bytes]: |
|
parts = [bytes([b]) for b in token] |
|
while True: |
|
min_idx = None |
|
min_rank = None |
|
for i, pair in enumerate(zip(parts[:-1], parts[1:])): |
|
rank = mergeable_ranks.get(pair[0] + pair[1]) |
|
if rank is not None and (min_rank is None or rank < min_rank): |
|
min_idx = i |
|
min_rank = rank |
|
if min_rank is None or (max_rank is not None and min_rank >= max_rank): |
|
break |
|
assert min_idx is not None |
|
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :] |
|
return parts |
|
|
|
|
|
def convert_tiktoken_bpe_to_hf(tiktoken_url: str): |
|
bpe_ranks = load_tiktoken_bpe(tiktoken_url) |
|
byte_encoder = bytes_to_unicode() |
|
|
|
def token_bytes_to_string(b): |
|
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")]) |
|
|
|
merges = [] |
|
vocab = {} |
|
for token, rank in bpe_ranks.items(): |
|
vocab[token_bytes_to_string(token)] = rank |
|
if len(token) == 1: |
|
continue |
|
merged = tuple(_bpe(bpe_ranks, token, max_rank=rank)) |
|
if len(merged) == 2: |
|
merges.append(" ".join(map(token_bytes_to_string, merged))) |
|
return vocab, merges |
|
|
|
|
|
def convert_tiktoken_to_hf( |
|
multilingual: bool = True, num_languages: int = 100, time_precision=0.02 |
|
) -> WhisperTokenizer: |
|
|
|
tiktoken_tokenizer_path = _TOKENIZERS["multilingual" if multilingual else "english"] |
|
start_of_transcript = ["<|endoftext|>", "<|startoftranscript|>"] |
|
control_tokens = [ |
|
"<|translate|>", |
|
"<|transcribe|>", |
|
"<|startoflm|>", |
|
"<|startofprev|>", |
|
"<|nospeech|>", |
|
"<|notimestamps|>", |
|
] |
|
|
|
language_tokens = [f"<|{k}|>" for k in list(LANGUAGES)[:num_languages]] |
|
|
|
timestamp_tokens = [("<|%.2f|>" % (i * time_precision)) for i in range(1500 + 1)] |
|
|
|
vocab, merges = convert_tiktoken_bpe_to_hf(tiktoken_tokenizer_path) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
vocab_file = f"{tmpdirname}/vocab.json" |
|
merge_file = f"{tmpdirname}/merges.txt" |
|
with open(vocab_file, "w", encoding="utf-8") as f: |
|
f.write(json.dumps(vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") |
|
|
|
with open(merge_file, "w", encoding="utf-8") as writer: |
|
writer.write("#version: 0.2\n") |
|
for bpe_tokens in merges: |
|
writer.write(bpe_tokens + "\n") |
|
|
|
hf_tokenizer = WhisperTokenizer(vocab_file, merge_file) |
|
|
|
hf_tokenizer.add_tokens(start_of_transcript + language_tokens + control_tokens, special_tokens=True) |
|
hf_tokenizer.add_tokens(timestamp_tokens, special_tokens=False) |
|
return hf_tokenizer |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--checkpoint_path", type=str, help="Path to the downloaded checkpoints") |
|
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") |
|
parser.add_argument( |
|
"--convert_preprocessor", |
|
type=bool, |
|
default=False, |
|
help="Whether or not the preprocessor (tokenizer + feature extractor) should be converted along with the model.", |
|
) |
|
args = parser.parse_args() |
|
|
|
model, is_multilingual, num_languages = convert_openai_whisper_to_tfms( |
|
args.checkpoint_path, args.pytorch_dump_folder_path |
|
) |
|
|
|
if args.convert_preprocessor: |
|
try: |
|
if not _is_package_available("tiktoken"): |
|
raise ModuleNotFoundError( |
|
"""`tiktoken` is not installed, use `pip install tiktoken` to convert the tokenizer""" |
|
) |
|
except Exception as e: |
|
print(e) |
|
else: |
|
from tiktoken.load import load_tiktoken_bpe |
|
|
|
tokenizer = convert_tiktoken_to_hf(is_multilingual, num_languages) |
|
feature_extractor = WhisperFeatureExtractor( |
|
feature_size=model.config.num_mel_bins, |
|
|
|
) |
|
processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) |
|
processor.save_pretrained(args.pytorch_dump_folder_path) |
|
|
|
|
|
fast_tokenizer = WhisperTokenizerFast.from_pretrained(args.pytorch_dump_folder_path) |
|
fast_tokenizer.save_pretrained(args.pytorch_dump_folder_path, legacy_format=False) |
|
|
|
model.save_pretrained(args.pytorch_dump_folder_path) |
|
|