File size: 18,983 Bytes
a02a0bb 265ea18 791cc99 265ea18 791cc99 f9bfbb7 5538f49 7938e2f 265ea18 791cc99 933e631 791cc99 7938e2f 5538f49 791cc99 265ea18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
# Install private dependencies first
import install_dependencies
install_dependencies.install_private_repos()
import gradio as gr
from gradio_rich_textbox import RichTextbox
import torchaudio
import re
import librosa
import torch
import numpy as np
import os
import tempfile
import subprocess
import sys
from pathlib import Path
from huggingface_hub import hf_hub_download
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from whisper.normalizers import EnglishTextNormalizer
from whisper import audio, DecodingOptions
from whisper.tokenizer import get_tokenizer
from whisper.decoding import detect_language
from olmoasr import load_model
from bs4 import BeautifulSoup
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Configuration for model download and conversion
OLMOASR_REPO = "allenai/OLMoASR" # Temporary model link as requested
CHECKPOINT_FILENAME = "tiny.en.pt" # Adjust based on actual filename in the repo
LOCAL_CHECKPOINT_DIR = "checkpoint_tiny"
HF_MODEL_DIR = "tiny_hf"
def ensure_checkpoint_dir():
"""Ensure the checkpoint directory exists."""
Path(LOCAL_CHECKPOINT_DIR).mkdir(parents=True, exist_ok=True)
Path(HF_MODEL_DIR).mkdir(parents=True, exist_ok=True)
def download_olmoasr_checkpoint():
"""Download OLMoASR checkpoint from HuggingFace hub."""
ensure_checkpoint_dir()
local_checkpoint_path = os.path.join(LOCAL_CHECKPOINT_DIR, CHECKPOINT_FILENAME)
# Check if checkpoint already exists
if os.path.exists(local_checkpoint_path):
print(f"Checkpoint already exists at {local_checkpoint_path}")
return local_checkpoint_path
try:
print(f"Downloading checkpoint from {OLMOASR_REPO}")
downloaded_path = hf_hub_download(
repo_id=OLMOASR_REPO,
filename=CHECKPOINT_FILENAME,
local_dir=LOCAL_CHECKPOINT_DIR,
local_dir_use_symlinks=False,
token=os.getenv("HF_TOKEN"),
)
print(f"Downloaded checkpoint to {downloaded_path}")
return downloaded_path
except Exception as e:
print(f"Error downloading checkpoint: {e}")
def convert_checkpoint_to_hf(checkpoint_path):
"""Convert OLMoASR checkpoint to HuggingFace format using subprocess."""
if os.path.exists(os.path.join(HF_MODEL_DIR, "config.json")):
print(f"HuggingFace model already exists at {HF_MODEL_DIR}")
return HF_MODEL_DIR
try:
print(f"Converting checkpoint {checkpoint_path} to HuggingFace format")
# Path to the conversion script
script_path = os.path.join(os.path.dirname(__file__), "convert_openai_to_hf.py")
# Run the conversion script using subprocess
cmd = [
sys.executable,
script_path,
"--checkpoint_path",
checkpoint_path,
"--pytorch_dump_folder_path",
HF_MODEL_DIR,
"--convert_preprocessor",
"True",
]
print(f"Running conversion command: {' '.join(cmd)}")
# Execute the conversion script
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
print("Conversion output:")
print(result.stdout)
if result.stderr:
print("Conversion warnings/errors:")
print(result.stderr)
# Verify that the conversion was successful
if os.path.exists(os.path.join(HF_MODEL_DIR, "config.json")):
print(f"Model successfully converted and saved to {HF_MODEL_DIR}")
return HF_MODEL_DIR
else:
raise Exception("Conversion completed but config.json not found")
except subprocess.CalledProcessError as e:
print(f"Conversion script failed with return code {e.returncode}")
print(f"stdout: {e.stdout}")
print(f"stderr: {e.stderr}")
raise e
except Exception as e:
print(f"Error converting checkpoint: {e}")
raise e
def initialize_models():
"""Initialize both HuggingFace and OLMoASR models."""
# Download and convert HuggingFace model
#checkpoint_path = download_olmoasr_checkpoint()
#hf_model_path = convert_checkpoint_to_hf(checkpoint_path)
olmoasr_ckpt = os.path.join(LOCAL_CHECKPOINT_DIR, CHECKPOINT_FILENAME)
hf_model_path = HF_MODEL_DIR
# Load HuggingFace model
hf_model = AutoModelForSpeechSeq2Seq.from_pretrained(
hf_model_path,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
)
hf_model.to(device).eval()
processor = AutoProcessor.from_pretrained(hf_model_path)
# Load OLMoASR model
olmoasr_model = load_model(
name=olmoasr_ckpt, device=device, inference=True, in_memory=True
)
olmoasr_model.to(device).eval()
return hf_model, processor, olmoasr_model
# Initialize models
print("Initializing models...")
hf_model, processor, olmoasr_model = initialize_models()
print("Models initialized successfully!")
normalizer = EnglishTextNormalizer()
def stereo_to_mono(waveform):
# Check if the waveform is stereo
if waveform.shape[0] == 2:
# Average the two channels to convert to mono
mono_waveform = np.mean(waveform, axis=0)
return mono_waveform
else:
# If already mono, return as is
return waveform
def hf_chunk_transcribe(audio_file, timestamp_text, transcription_text):
hf_transcriber = pipeline(
"automatic-speech-recognition",
model=hf_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
chunk_length_s=30,
)
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
waveform = stereo_to_mono(waveform)
print(waveform.shape)
if sample_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
result = hf_transcriber(waveform, return_timestamps=True)
print(f"{result['text']=}\n")
print(f"{result['chunks']=}\n")
# text = result["text"].strip().replace("\n", " ")
# text = re.sub(r"(foreign|foreign you|you)\s*$", "", text)
chunks, text = hf_process_chunks(result["chunks"])
print(f"{chunks=}\n")
print(f"{text=}\n")
# Edit components
transSoup = BeautifulSoup(transcription_text, "html.parser")
transText = transSoup.find(id="transcriptionText")
if transText:
transText.clear()
transText.append(BeautifulSoup(text, "html.parser"))
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
timeText = timeSoup.find(id="timestampText")
if timeText:
timeText.clear()
timeText.append(BeautifulSoup(chunks, "html.parser"))
return str(timeSoup), str(transSoup)
def olmoasr_seq_transcribe(audio_file, timestamp_text, transcription_text):
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
waveform = stereo_to_mono(waveform)
print(waveform.shape)
if sample_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
options = dict(
task="transcribe",
language="en",
without_timestamps=False,
beam_size=5,
best_of=5,
)
result = olmoasr_model.transcribe(waveform, verbose=False, **options)
print(f"{result['text']=}\n")
print(f"{result['segments']=}\n")
# text = result["text"].strip().replace("\n", " ")
# text = re.sub(r"(foreign|foreign you|Thank you for watching!|. you)\s*$", "", text)
chunks, text = olmoasr_process_chunks(result["segments"])
print(f"{chunks=}\n")
print(f"{text=}\n")
# Edit components
transSoup = BeautifulSoup(transcription_text, "html.parser")
transText = transSoup.find(id="transcriptionText")
if transText:
transText.clear()
transText.append(BeautifulSoup(text, "html.parser"))
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
timeText = timeSoup.find(id="timestampText")
if timeText:
timeText.clear()
timeText.append(BeautifulSoup(chunks, "html.parser"))
return str(timeSoup), str(transSoup)
def hf_seq_transcribe(audio_file, timestamp_text, transcription_text):
hf_transcriber = pipeline(
"automatic-speech-recognition",
model=hf_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
waveform = stereo_to_mono(waveform)
print(waveform.shape)
if sample_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
result = hf_transcriber(
waveform,
return_timestamps=True,
)
print(f"{result['text']=}\n")
print(f"{result['chunks']=}\n")
# text = result["text"].strip().replace("\n", " ")
# text = re.sub(r"(foreign|foreign you|you)\s*$", "", text)
chunks, text = hf_seq_process_chunks(result["chunks"])
print(f"{text=}\n")
print(f"{chunks=}\n")
# Edit components
transSoup = BeautifulSoup(transcription_text, "html.parser")
transText = transSoup.find(id="transcriptionText")
if transText:
transText.clear()
transText.append(BeautifulSoup(text, "html.parser"))
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
timeText = timeSoup.find(id="timestampText")
if timeText:
timeText.clear()
timeText.append(BeautifulSoup(chunks, "html.parser"))
return str(timeSoup), str(transSoup)
def main_transcribe(inference_strategy, audio_file, timestamp_text, transcription_text):
if inference_strategy == "HuggingFace Chunking":
return hf_chunk_transcribe(audio_file, timestamp_text, transcription_text)
elif inference_strategy == "OLMoASR Sequential":
return olmoasr_seq_transcribe(audio_file, timestamp_text, transcription_text)
elif inference_strategy == "HuggingFace Sequential":
return hf_seq_transcribe(audio_file, timestamp_text, transcription_text)
def olmoasr_process_chunks(chunks):
processed_chunks = []
processed_chunks_text = []
for chunk in chunks:
text = chunk["text"].strip()
if not re.match(
r"\s*(foreign you|foreign|Thank you for watching!|you there|you)\s*$", text
):
if text.strip() == "":
continue
start = chunk["start"]
end = chunk["end"]
pattern = r"\n(?!\d+\.\d+\s*-->)"
text = re.sub(pattern, "", text)
processed_chunks_text.append(text.strip())
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text} <br>")
else:
break
print(f"{processed_chunks=}\n")
print(f"{processed_chunks_text=}\n")
print(
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
if processed_chunks_text
else None
)
if processed_chunks_text and re.search(
r"\s*foreign\s*$", processed_chunks_text[-1]
):
processed_chunks_text[-1] = re.sub(
r"\s*foreign\s*$", "", processed_chunks_text[-1]
)
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
def hf_process_chunks(chunks):
processed_chunks = []
processed_chunks_text = []
for chunk in chunks:
text = chunk["text"].strip()
if not re.match(r"(foreign you|foreign|you there|you)\s*$", text):
if text.strip() == "":
continue
start = chunk["timestamp"][0]
end = chunk["timestamp"][1]
pattern = r"\n(?!\d+\.\d+\s*-->)"
text = re.sub(pattern, "", text)
processed_chunks_text.append(text.strip())
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text.strip()} <br>")
else:
break
print(f"{processed_chunks=}\n")
print(f"{processed_chunks_text=}\n")
print(
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
if processed_chunks_text
else None
)
if processed_chunks_text and re.search(
r"\s*foreign\s*$", processed_chunks_text[-1]
):
processed_chunks_text[-1] = re.sub(
r"\s*foreign\s*$", "", processed_chunks_text[-1]
)
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
def hf_seq_process_chunks(chunks):
processed_chunks = []
processed_chunks_text = []
delta_time = 0.0
global_start = chunks[0]["timestamp"][0]
prev_end = -1.0
prev_dur = 0.0
accumulate_ts = False
for chunk in chunks:
text = chunk["text"].strip()
if not re.match(r"\s*(foreign you|foreign|you there|you)\s*$", text):
if text.strip() == "":
continue
start = chunk["timestamp"][0]
if start < prev_end:
accumulate_ts = True
end = chunk["timestamp"][1]
if start < prev_end:
prev_dur += delta_time
# print(f"{prev_dur=}")
delta_time = end - global_start
# print(f"{delta_time=}")
prev_end = end
# print(f"{prev_end=}")
if accumulate_ts:
start += prev_dur
if accumulate_ts:
end += prev_dur
# print(f"{start=}, {end=}, {prev_dur=}")
pattern = r"\n(?!\d+\.\d+\s*-->)"
text = re.sub(pattern, "", text)
processed_chunks_text.append(text.strip())
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text.strip()} <br>")
else:
break
print(f"{processed_chunks=}\n")
print(f"{processed_chunks_text=}\n")
print(
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
if processed_chunks_text
else None
)
if processed_chunks_text and re.search(
r"\s*foreign\s*$", processed_chunks_text[-1]
):
processed_chunks_text[-1] = re.sub(
r"\s*foreign\s*$", "", processed_chunks_text[-1]
)
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
original_timestamp_html = """
<div style="background: white; border: 1px solid #d1d5db; border-radius: 8px; padding: 16px; width: 100%; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); flex: 1; margin-right: 10px;">
<div style="color: #374151; font-size: 14px; font-weight: 500; margin-bottom: 8px;">Timestamp Text</div>
<div id="timestampText"; style="color: #6b7280; font-size: 14px; line-height: 1.5; min-height: 100px; font-family: system-ui, sans-serif;"></div>
</div>
"""
original_transcription_html = """
<div style="background: white; border: 1px solid #d1d5db; border-radius: 8px; padding: 16px; width: 100%; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); flex: 1; margin-right: 10px;">
<div style="color: #374151; font-size: 14px; font-weight: 500; margin-bottom: 8px;">Transcription Text</div>
<div id="transcriptionText"; style="color: #6b7280; font-size: 14px; line-height: 1.5; min-height: 100px; font-family: system-ui, sans-serif;"></div>
</div>
"""
def reset():
return original_timestamp_html, original_transcription_html
event_process_js = """
<script>
function getTime() {
lastIndex = -1;
setInterval(() => {
time = document.getElementById('time');
timestampText = document.getElementById('timestampText');
if(timestampText && timestampText.innerText != '') {
if(time == null) {
timestampText.innerText = '';
transcriptionText = document.getElementById('transcriptionText');
if(transcriptionText) {
transcriptionText.innerText = '';
}
lastIndex = -1;
return;
}
timeContent = time.textContent;
const parts = timeContent.split(":").map(Number);
currTime = parseFloat(parts[0]) * 60 + parseFloat(parts[1]);
currText = timestampText.innerText;
const matches = [...currText.matchAll(/([\d.]+)\s*-->/g)];
const startTimestamps = matches.map(m => parseFloat(m[1]));
if(startTimestamps.length != 0) {
correctIndex = 0;
for (let i = 0; i < startTimestamps.length; i++) {
if (startTimestamps[i] <= currTime) {
correctIndex = i;
}
else {
break;
}
}
if (lastIndex != correctIndex) {
lastIndex = correctIndex;
lines = currText.split('\\n');
lines[correctIndex] = '<span style="background-color: #ff69b4; padding: 3px 8px; font-weight: 500; border-radius: 4px; color: white; box-shadow: 0 0 10px rgba(255, 105, 180, 0.5);">' + lines[correctIndex] + '</span>';
try {
timestampText.innerHTML = lines.join('<br>');
}
catch (e) {
console.log('Not Updating!');
}
}
}
}
else {
lastIndex = -1;
}
}, 50);
}
setTimeout(getTime, 1000);
</script>
"""
demo = gr.Blocks(
head=event_process_js,
theme=gr.themes.Default(primary_hue="emerald", secondary_hue="green"),
)
with demo:
audio = gr.Audio(sources=["upload", "microphone"], type="filepath")
inf_strategy = gr.Dropdown(
label="Inference Strategy",
choices=[
"HuggingFace Chunking",
"HuggingFace Sequential",
"OLMoASR Sequential",
],
value="HuggingFace Chunking",
multiselect=False,
info="Select the inference strategy for transcription.",
elem_id="inf_strategy",
)
main_transcribe_button = gr.Button(
"Transcribe",
variant="primary",
)
with gr.Row():
timestampText = gr.HTML(original_timestamp_html)
transcriptionText = gr.HTML(original_transcription_html)
inf_strategy.change(
fn=reset,
inputs=[],
outputs=[timestampText, transcriptionText],
)
main_transcribe_button.click(
fn=main_transcribe,
inputs=[inf_strategy, audio, timestampText, transcriptionText],
outputs=[timestampText, transcriptionText],
)
demo.launch(share=True)
|