Spaces:
Sleeping
Sleeping
Commit
·
9c2ed59
1
Parent(s):
ee056ae
migrate from github
Browse files- app.py +1 -1
- notebook.ipynb +52 -52
- requirements.txt +0 -0
app.py
CHANGED
@@ -8,7 +8,7 @@ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_sc
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
|
10 |
# Load
|
11 |
-
train_df = pd.read_csv("
|
12 |
|
13 |
# Preprocess
|
14 |
train_df["Age"].fillna(train_df["Age"].median(), inplace=True)
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
|
10 |
# Load
|
11 |
+
train_df = pd.read_csv("datasets/train.csv")
|
12 |
|
13 |
# Preprocess
|
14 |
train_df["Age"].fillna(train_df["Age"].median(), inplace=True)
|
notebook.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -18,7 +18,7 @@
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
-
"execution_count":
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
@@ -28,7 +28,7 @@
|
|
28 |
},
|
29 |
{
|
30 |
"cell_type": "code",
|
31 |
-
"execution_count":
|
32 |
"metadata": {},
|
33 |
"outputs": [],
|
34 |
"source": [
|
@@ -48,7 +48,7 @@
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
-
"execution_count":
|
52 |
"metadata": {},
|
53 |
"outputs": [],
|
54 |
"source": [
|
@@ -60,13 +60,13 @@
|
|
60 |
},
|
61 |
{
|
62 |
"cell_type": "code",
|
63 |
-
"execution_count":
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
66 |
{
|
67 |
"data": {
|
68 |
"text/html": [
|
69 |
-
"<style>#sk-container-id-
|
70 |
" /* Definition of color scheme common for light and dark mode */\n",
|
71 |
" --sklearn-color-text: #000;\n",
|
72 |
" --sklearn-color-text-muted: #666;\n",
|
@@ -97,15 +97,15 @@
|
|
97 |
" }\n",
|
98 |
"}\n",
|
99 |
"\n",
|
100 |
-
"#sk-container-id-
|
101 |
" color: var(--sklearn-color-text);\n",
|
102 |
"}\n",
|
103 |
"\n",
|
104 |
-
"#sk-container-id-
|
105 |
" padding: 0;\n",
|
106 |
"}\n",
|
107 |
"\n",
|
108 |
-
"#sk-container-id-
|
109 |
" border: 0;\n",
|
110 |
" clip: rect(1px 1px 1px 1px);\n",
|
111 |
" clip: rect(1px, 1px, 1px, 1px);\n",
|
@@ -117,7 +117,7 @@
|
|
117 |
" width: 1px;\n",
|
118 |
"}\n",
|
119 |
"\n",
|
120 |
-
"#sk-container-id-
|
121 |
" border: 1px dashed var(--sklearn-color-line);\n",
|
122 |
" margin: 0 0.4em 0.5em 0.4em;\n",
|
123 |
" box-sizing: border-box;\n",
|
@@ -125,7 +125,7 @@
|
|
125 |
" background-color: var(--sklearn-color-background);\n",
|
126 |
"}\n",
|
127 |
"\n",
|
128 |
-
"#sk-container-id-
|
129 |
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
130 |
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
131 |
" so we also need the `!important` here to be able to override the\n",
|
@@ -135,7 +135,7 @@
|
|
135 |
" position: relative;\n",
|
136 |
"}\n",
|
137 |
"\n",
|
138 |
-
"#sk-container-id-
|
139 |
" display: none;\n",
|
140 |
"}\n",
|
141 |
"\n",
|
@@ -151,14 +151,14 @@
|
|
151 |
"\n",
|
152 |
"/* Parallel-specific style estimator block */\n",
|
153 |
"\n",
|
154 |
-
"#sk-container-id-
|
155 |
" content: \"\";\n",
|
156 |
" width: 100%;\n",
|
157 |
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
158 |
" flex-grow: 1;\n",
|
159 |
"}\n",
|
160 |
"\n",
|
161 |
-
"#sk-container-id-
|
162 |
" display: flex;\n",
|
163 |
" align-items: stretch;\n",
|
164 |
" justify-content: center;\n",
|
@@ -166,28 +166,28 @@
|
|
166 |
" position: relative;\n",
|
167 |
"}\n",
|
168 |
"\n",
|
169 |
-
"#sk-container-id-
|
170 |
" display: flex;\n",
|
171 |
" flex-direction: column;\n",
|
172 |
"}\n",
|
173 |
"\n",
|
174 |
-
"#sk-container-id-
|
175 |
" align-self: flex-end;\n",
|
176 |
" width: 50%;\n",
|
177 |
"}\n",
|
178 |
"\n",
|
179 |
-
"#sk-container-id-
|
180 |
" align-self: flex-start;\n",
|
181 |
" width: 50%;\n",
|
182 |
"}\n",
|
183 |
"\n",
|
184 |
-
"#sk-container-id-
|
185 |
" width: 0;\n",
|
186 |
"}\n",
|
187 |
"\n",
|
188 |
"/* Serial-specific style estimator block */\n",
|
189 |
"\n",
|
190 |
-
"#sk-container-id-
|
191 |
" display: flex;\n",
|
192 |
" flex-direction: column;\n",
|
193 |
" align-items: center;\n",
|
@@ -205,14 +205,14 @@
|
|
205 |
"\n",
|
206 |
"/* Pipeline and ColumnTransformer style (default) */\n",
|
207 |
"\n",
|
208 |
-
"#sk-container-id-
|
209 |
" /* Default theme specific background. It is overwritten whether we have a\n",
|
210 |
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
211 |
" background-color: var(--sklearn-color-background);\n",
|
212 |
"}\n",
|
213 |
"\n",
|
214 |
"/* Toggleable label */\n",
|
215 |
-
"#sk-container-id-
|
216 |
" cursor: pointer;\n",
|
217 |
" display: flex;\n",
|
218 |
" width: 100%;\n",
|
@@ -225,13 +225,13 @@
|
|
225 |
" gap: 0.5em;\n",
|
226 |
"}\n",
|
227 |
"\n",
|
228 |
-
"#sk-container-id-
|
229 |
" font-size: 0.6rem;\n",
|
230 |
" font-weight: lighter;\n",
|
231 |
" color: var(--sklearn-color-text-muted);\n",
|
232 |
"}\n",
|
233 |
"\n",
|
234 |
-
"#sk-container-id-
|
235 |
" /* Arrow on the left of the label */\n",
|
236 |
" content: \"▸\";\n",
|
237 |
" float: left;\n",
|
@@ -239,13 +239,13 @@
|
|
239 |
" color: var(--sklearn-color-icon);\n",
|
240 |
"}\n",
|
241 |
"\n",
|
242 |
-
"#sk-container-id-
|
243 |
" color: var(--sklearn-color-text);\n",
|
244 |
"}\n",
|
245 |
"\n",
|
246 |
"/* Toggleable content - dropdown */\n",
|
247 |
"\n",
|
248 |
-
"#sk-container-id-
|
249 |
" max-height: 0;\n",
|
250 |
" max-width: 0;\n",
|
251 |
" overflow: hidden;\n",
|
@@ -254,12 +254,12 @@
|
|
254 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
255 |
"}\n",
|
256 |
"\n",
|
257 |
-
"#sk-container-id-
|
258 |
" /* fitted */\n",
|
259 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
260 |
"}\n",
|
261 |
"\n",
|
262 |
-
"#sk-container-id-
|
263 |
" margin: 0.2em;\n",
|
264 |
" border-radius: 0.25em;\n",
|
265 |
" color: var(--sklearn-color-text);\n",
|
@@ -267,79 +267,79 @@
|
|
267 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
268 |
"}\n",
|
269 |
"\n",
|
270 |
-
"#sk-container-id-
|
271 |
" /* unfitted */\n",
|
272 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
273 |
"}\n",
|
274 |
"\n",
|
275 |
-
"#sk-container-id-
|
276 |
" /* Expand drop-down */\n",
|
277 |
" max-height: 200px;\n",
|
278 |
" max-width: 100%;\n",
|
279 |
" overflow: auto;\n",
|
280 |
"}\n",
|
281 |
"\n",
|
282 |
-
"#sk-container-id-
|
283 |
" content: \"▾\";\n",
|
284 |
"}\n",
|
285 |
"\n",
|
286 |
"/* Pipeline/ColumnTransformer-specific style */\n",
|
287 |
"\n",
|
288 |
-
"#sk-container-id-
|
289 |
" color: var(--sklearn-color-text);\n",
|
290 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
291 |
"}\n",
|
292 |
"\n",
|
293 |
-
"#sk-container-id-
|
294 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
295 |
"}\n",
|
296 |
"\n",
|
297 |
"/* Estimator-specific style */\n",
|
298 |
"\n",
|
299 |
"/* Colorize estimator box */\n",
|
300 |
-
"#sk-container-id-
|
301 |
" /* unfitted */\n",
|
302 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
303 |
"}\n",
|
304 |
"\n",
|
305 |
-
"#sk-container-id-
|
306 |
" /* fitted */\n",
|
307 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
308 |
"}\n",
|
309 |
"\n",
|
310 |
-
"#sk-container-id-
|
311 |
-
"#sk-container-id-
|
312 |
" /* The background is the default theme color */\n",
|
313 |
" color: var(--sklearn-color-text-on-default-background);\n",
|
314 |
"}\n",
|
315 |
"\n",
|
316 |
"/* On hover, darken the color of the background */\n",
|
317 |
-
"#sk-container-id-
|
318 |
" color: var(--sklearn-color-text);\n",
|
319 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
320 |
"}\n",
|
321 |
"\n",
|
322 |
"/* Label box, darken color on hover, fitted */\n",
|
323 |
-
"#sk-container-id-
|
324 |
" color: var(--sklearn-color-text);\n",
|
325 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
326 |
"}\n",
|
327 |
"\n",
|
328 |
"/* Estimator label */\n",
|
329 |
"\n",
|
330 |
-
"#sk-container-id-
|
331 |
" font-family: monospace;\n",
|
332 |
" font-weight: bold;\n",
|
333 |
" display: inline-block;\n",
|
334 |
" line-height: 1.2em;\n",
|
335 |
"}\n",
|
336 |
"\n",
|
337 |
-
"#sk-container-id-
|
338 |
" text-align: center;\n",
|
339 |
"}\n",
|
340 |
"\n",
|
341 |
"/* Estimator-specific */\n",
|
342 |
-
"#sk-container-id-
|
343 |
" font-family: monospace;\n",
|
344 |
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
345 |
" border-radius: 0.25em;\n",
|
@@ -349,18 +349,18 @@
|
|
349 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
350 |
"}\n",
|
351 |
"\n",
|
352 |
-
"#sk-container-id-
|
353 |
" /* fitted */\n",
|
354 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
355 |
"}\n",
|
356 |
"\n",
|
357 |
"/* on hover */\n",
|
358 |
-
"#sk-container-id-
|
359 |
" /* unfitted */\n",
|
360 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
361 |
"}\n",
|
362 |
"\n",
|
363 |
-
"#sk-container-id-
|
364 |
" /* fitted */\n",
|
365 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
366 |
"}\n",
|
@@ -448,7 +448,7 @@
|
|
448 |
"\n",
|
449 |
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
450 |
"\n",
|
451 |
-
"#sk-container-id-
|
452 |
" float: right;\n",
|
453 |
" font-size: 1rem;\n",
|
454 |
" line-height: 1em;\n",
|
@@ -463,31 +463,31 @@
|
|
463 |
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
464 |
"}\n",
|
465 |
"\n",
|
466 |
-
"#sk-container-id-
|
467 |
" /* fitted */\n",
|
468 |
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
469 |
" color: var(--sklearn-color-fitted-level-1);\n",
|
470 |
"}\n",
|
471 |
"\n",
|
472 |
"/* On hover */\n",
|
473 |
-
"#sk-container-id-
|
474 |
" /* unfitted */\n",
|
475 |
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
476 |
" color: var(--sklearn-color-background);\n",
|
477 |
" text-decoration: none;\n",
|
478 |
"}\n",
|
479 |
"\n",
|
480 |
-
"#sk-container-id-
|
481 |
" /* fitted */\n",
|
482 |
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
483 |
"}\n",
|
484 |
-
"</style><div id=\"sk-container-id-
|
485 |
],
|
486 |
"text/plain": [
|
487 |
"RandomForestClassifier(random_state=1)"
|
488 |
]
|
489 |
},
|
490 |
-
"execution_count":
|
491 |
"metadata": {},
|
492 |
"output_type": "execute_result"
|
493 |
}
|
@@ -500,7 +500,7 @@
|
|
500 |
},
|
501 |
{
|
502 |
"cell_type": "code",
|
503 |
-
"execution_count":
|
504 |
"metadata": {},
|
505 |
"outputs": [
|
506 |
{
|
@@ -525,7 +525,7 @@
|
|
525 |
},
|
526 |
{
|
527 |
"data": {
|
528 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJNNJREFUeJzt3Qt4FPW9//HPBnITSGIi5CJEAZXgBcGAEES0GI2UP8IBUSw9ImCpFlIhCpqjYEU0eCkgRUDRgtbSKv4FxVYQo+LhGOSmHFHkmhpuSURJAtGEmOQ8Mz5s2SFKVnez48z75TNPsr+Z7P7iY/zs9zu/mfXU19fXCwAAuEZYqCcAAACaFuEPAIDLEP4AALgM4Q8AgMsQ/gAAuAzhDwCAyxD+AAC4DOEPAIDLEP4AALhMc9lEdLfxoZ4CYDuHN8wN9RQAW4pq/vPJpG8+tN/fsW3CHwAA2/A4uzHu7N8OAACchMofAAArj0dORvgDAOCytj/hDwCAyyp/Z7+1AQAAJ6HyBwDAirY/AAAu46HtDwAAHITKHwAAK9r+AAC4jIe2PwAAcBAqfwAAXNb2d/ZvBwDAj237ewK0+eHIkSOaMGGCzjrrLEVHR6t3797asGGDd399fb2mTp2q5ORkc39mZqZ27tzp969H+AMAYBO33nqrVq9erb/85S/6+OOPdc0115gBv3//fnP/o48+qjlz5mjBggX64IMP1KJFC2VlZamqqsqv1/HUG28jbCCQn50MOMXhDfb7HHDADqKCfNI6us+UgD3XN2sfbNxx33yjVq1a6dVXX9WAAQO84+np6erfv78efPBBpaSk6M4779Rdd91l7isvL1diYqIWL16s4cOHN3pOVP4AAASx7V9dXa2KigqfzRiz+vbbb1VbW6uoqCifcaO9v3btWhUWFqq4uNjsBBwXGxurnj17qqCgQP4g/AEAaGjBX4C2vLw8M6RP3IwxK6Pqz8jIMCv8AwcOmG8EXnjhBTPYDx48aAa/waj0T2Q8Pr6vsQh/AACCKDc312zPn7gZYw0xzvUbZ+PPPPNMRUZGmuf3b7rpJoWFBTauCX8AAIJY+RshHhMT47MZYw3p2LGj1qxZo6NHj2rv3r1av369ampq1KFDByUlJZnHlJSU+PyM8fj4vsYi/AEAsArzBG77EYxV/MblfIcPH9aqVas0aNAgtW/f3gz5/Px873HG+gFj1b9xusAf3OQHAACbMILeaPt36tRJu3bt0qRJk5SWlqZRo0bJ4/GY9wCYPn26zj33XPPNwJQpU8wrAAYPHuzX6xD+AADY5A5/x9cD7Nu3T/Hx8Ro6dKgeeughhYeHm/snT56syspKjR07VmVlZerTp49Wrlx50hUCp8J1/oCNcZ0/EKLr/K96OGDP9U3+f8luOOcPAIDL0PYHAMBlH+xD+AMAYOXnB/L83Dj7rQ0AADgJlT8AAFa0/QEAcBmPs9v+hD8AAC6r/J392wEAgJNQ+QMAYEXbHwAAl/E4uzHu7N8OAACchMofAAAr2v4AALiMx9mNcWf/dgAA4CRU/gAAuKzyJ/wBAHDZOX9nv7UBAAAnofIHAMCKtj8AAC7jcXbbn/AHAMBllb+zfzsAAHASKn8AAKxo+wMA4C4eh4c/bX8AAFyGyh8AAJdV/oQ/AABWzs5+2v4AALgNlT8AABa0/QEAcBmPw8Oftj8AAC5D5Q8AgMsqf8IfAAALwh8AALfxyNE45w8AgMsQ/gAANND2D9Tmj9raWk2ZMkXt27dXdHS0OnbsqAcffFD19fXeY4zvp06dquTkZPOYzMxM7dy506/XIfwBALBJ+D/yyCOaP3++5s6dq23btpmPH330Uf3pT3/yHmM8njNnjhYsWKAPPvhALVq0UFZWlqqqqhr9OpzzBwDAJt5//30NGjRIAwYMMB+fffbZ+tvf/qb169d7q/7Zs2frvvvuM48zPP/880pMTNTy5cs1fPjwRr0OlT8AAEGs/Kurq1VRUeGzGWMN6d27t/Lz87Vjxw7z8ZYtW7R27Vr179/ffFxYWKji4mKz1X9cbGysevbsqYKCAjUW4Q8AQBDDPy8vzwzoEzdjrCH33HOPWb2npaUpPDxc3bp104QJEzRixAhzvxH8BqPSP5Hx+Pi+xqDtDwBAEOXm5ionJ8dnLDIyssFjX3rpJf31r3/VkiVLdMEFF+ijjz4ywz8lJUUjR44M2JwIfwAAgnidvxH03xf2VpMmTfJW/4aLLrpIn3/+udkpMMI/KSnJHC8pKTFX+x9nPO7atWuj50TbHwAAm6z2//rrrxUW5hvNzZo1U11dnfm9cQmg8QbAWBdwnLGGwFj1n5GR0ejXofIHAMAmBg4cqIceekipqalm2//DDz/UzJkzNXr0aHO/8WbCOA0wffp0nXvuueabAeO+AMZpgcGDBzf6dQh/AABscm9/43p+I8x/97vfqbS01Az13/72t+ZNfY6bPHmyKisrNXbsWJWVlalPnz5auXKloqKiGv06nvoTbxsUQtHdxod6CoDtHN4wN9RTAGwpKsila5vRLwXsuUr/fIPshsofAAArPtgHAAA4CZU/AAA2OeffVAh/AABcFv60/QEAcBkqfwAAXFb5E/4AALgs/Gn7AwDgMlT+AABYObvwJ/wBALCi7Q8AAByFyh8AAJdV/oQ/AAAWhD8AAG7jkaNxzh8AAJeh8gcAwGVtfyp/l2p5WqQeu2uotv9zmr4qmKl3Fuco/fzUBo+dc+9wffPhXI3/1ZVNPk+gKW3auEHZv7tNmVf20cUXdNLb+W9599XU1GjWHx/T0MED1bN7V/OYe3Mnq7S0JKRzRvDC3xOgzY4If5eaP/VX6tcrTaPve07db3hYbxV8pn8syFZK61if4677RRddetHZOlBaFrK5Ak3lm2++VqdOnZR73/0n7auqqtJn2z7V2Ntu14tLX9HMJ+bqX4WFumP87SGZK/BT0PZ3oajIcA2+qquGTXxa/7N5tzn20FP/1C/7XqjfDLtcD8x73Rwz3gjMvHuYBv7uSS37E/+Dg/P1ufwKc2tIq1at9NQzi3zGcu+dohHDh+nggQNKTklpolmiKXhsWrEHCuHvQs2bhal582aqOlbjM15VXaPe3Tp6/8N/dvrNmvVcvrbtKQ7RTAF7O3r0qPm30iomJtRTQYB5CH9fhw4d0p///GcVFBSouPi7UEhKSlLv3r11yy23qHXr1sGYJwLo6NfVWrdlj3J/01/bC0tU8mWFbri2u3p2aa/de78wj7lz1NX6trZOT/7t3VBPF7Cl6upqzZ75uPr/coBatmwZ6ukAwTvnv2HDBp133nmaM2eOYmNj1bdvX3MzvjfG0tLStHHjxkb90VRUVPhs9XW1/s0cP8no+56X8cZ2z5sPqfyD2Rp30xV6aeVG1dXVq1vndhp305Uae/8LoZ4mYEvG4r9JOXeovr5e9059INTTQTB4Arj93Cv/7OxsDRs2TAsWLDipJWL8Edx2223mMUZX4Ifk5eXpgQd8/2CaJfZQePKl/kwHP0HhvkO65tYndFpUhGJaRqn4UIX+MmOUCvcf0mXdOqpNfEvt+Oc07/HGaYIZOUM0fsQvlDbg5MVQgKuC/84J5nn+hYueo+p3KA9t/3/bsmWLFi9e3OC/FGNs4sSJ6tat2ymfJzc3Vzk5OT5jbS6/25+pIEC+rjpmbnGtopXZu7Punf2qlud/pLc/2O5z3Ip547TkH+v1/KvrQjZXwC7BX/T553pm0fOKizs91FMCgh/+xrn99evXm+39hhj7EhMTT/k8kZGR5nYiT1gzf6aCnygzo7PZ9t/xr1J1bNdaD08crB2FJXr+tQJ9+22dviqv9Dm+5ttalRyq0M7PS0M2ZyDYvq6sVFFRkffx/n379Nm2beapzTNat9ZdE3+vbds+1Z+efEp1tbU69MV3a2SM/eERESGcOQLNQ+X/b3fddZfGjh2rTZs26aqrrvIGfUlJifLz87Vw4UI9/vjjwZorAii2ZZSmZV+nMxPj9FX513o1/yPd/+QKM/gBt/rkk626ddTN3sePP5pnfr1u0H/otnHj9e47b5uPbxg6yOfnjC5Aj0t7NvFsEUweZ2e/PPXGyXo/vPjii5o1a5b5BqC29rtFes2aNVN6errZyr/hhht+1ESiu43/UT8HONnhDXNDPQXAlqKCfKH6uZNWBuy5dj52rezG7399N954o7kZ576My/4MZ5xxhsLDw4MxPwAAEGA/+r2TEfbJycmBnQ0AADbgcXjbnzv8AQDgsgV/fLAPAAAuQ+UPAICFwwt/wh8AAKuwMGenP21/AABchvAHAKCBtn+gNn+cffbZ5mJD6zZu3Dhzf1VVlfl9QkKC+bkSQ4cONW+05y/CHwAAi4YC+Mdu/n567sGDB73b6tWrzXHjQ/UMxmforFixQkuXLtWaNWt04MABDRkyRP7inD8AADbRunVrn8czZsxQx44ddcUVV6i8vFzPPvuslixZon79+pn7Fy1apM6dO2vdunXq1atXo1+Hyh8AgCC2/aurq1VRUeGzGWOncuzYMb3wwgsaPXq02UEwbqtv3F03MzPTe4zxQXupqakqKCiQPwh/AACC2PbPy8szP/nxxM0YO5Xly5errKxMt9xyi/m4uLhYERERiouL8znO+JA9Y58/aPsDABDEO/zl5uaaH3x3IuvH2jfEaPH3799fKSkpCjTCHwCAIDKCvjFhf6LPP/9cb731ll555RXvWFJSknkqwOgGnFj9G6v9jX3+oO0PAIBNLvU7zljI16ZNGw0YMMA7lp6ebn6oXn5+vnds+/btKioqUkZGhl/PT+UPAICNPtinrq7ODP+RI0eqefN/x7SxVmDMmDHmKYT4+HjFxMQoOzvbDH5/VvobCH8AAGzEaPcb1byxyt9q1qxZCgsLM2/uY1wxkJWVpXnz5vn9Gp76+vp62UB0t/GhngJgO4c3zA31FABbigpy6XrJtLcD9lybp353Tb6dUPkDAGCjtn9TYMEfAAAuQ+UPAICFwwt/wh8AACva/gAAwFGo/AEAsHB44U/4AwDgtrY/4Q8AgIXDs59z/gAAuA2VPwAAFrT9AQBwGY+zs5+2PwAAbkPlDwCABW1/AABcxuPs7KftDwCA21D5AwBgQdsfAACX8Tg8/Gn7AwDgMlT+AABYOLzwJ/wBAHBb25/wBwDAwuHZzzl/AADchsofAAAL2v4AALiMx9nZT9sfAAC3ofIHAMAizOGlP+EPAICFw7Oftj8AAG5D5Q8AgAWr/QEAcJkwZ2c/4Q8AgNsqf875AwDgMlT+AABYOLzwJ/wBALDyyNnpT9sfAAAb2b9/v379618rISFB0dHRuuiii7Rx40bv/vr6ek2dOlXJycnm/szMTO3cudOv1yD8AQBoYLV/oDZ/HD58WJdddpnCw8P1xhtv6NNPP9Uf//hHnX766d5jHn30Uc2ZM0cLFizQBx98oBYtWigrK0tVVVWNfh3a/gAA2GS1/yOPPKJ27dpp0aJF3rH27dv7VP2zZ8/Wfffdp0GDBpljzz//vBITE7V8+XINHz68Ua9D5Q8AQBBVV1eroqLCZzPGGvLaa6+pe/fuGjZsmNq0aaNu3bpp4cKF3v2FhYUqLi42W/3HxcbGqmfPniooKGj0nAh/AAAsjMI/UFteXp4Z0CduxlhD9uzZo/nz5+vcc8/VqlWrdPvtt+v3v/+9nnvuOXO/EfwGo9I/kfH4+L7GoO0PAEAQP9UvNzdXOTk5PmORkZENHltXV2dW/g8//LD52Kj8t27dap7fHzlyZMDmROUPAEAQGUEfExPjs31f+Bsr+M8//3yfsc6dO6uoqMj8PikpyfxaUlLic4zx+Pi+xiD8AQAIYtvfH8ZK/+3bt/uM7dixQ2eddZZ38Z8R8vn5+d79xhoCY9V/RkZGo1+Htj8AADZZ7T9x4kT17t3bbPvfcMMNWr9+vZ5++mlzOz6vCRMmaPr06ea6AOPNwJQpU5SSkqLBgwc3+nUIfwAAbHJ73x49emjZsmXmOoFp06aZ4W5c2jdixAjvMZMnT1ZlZaXGjh2rsrIy9enTRytXrlRUVFSjX8dTb1w0aAPR3caHegqA7RzeMDfUUwBsKSrIpeuwxZsD9lxLb7lEdkPlDwBAEFf72xHhDwCAhbOjn9X+AAC4DpU/AAA2We3fVAh/AAAs/P00vp8b2v4AALgMlT8AABa0/QEAcBmPs7Oftj8AAG5D5Q8AgAVtfwAAXCbM2dlP+AMA4LbKn3P+AAC4DJU/AAAWzq77CX8AAFz3qX60/QEAcBkqfwAALBxe+BP+AABYsdofAAA4CpU/AAAWDi/8CX8AAKxY7Q8AAByFyh8AAAuHF/6EPwAAblvtb5vw3/D6jFBPAbCdee/vCfUUAFvK6dshqM8fJmdz+u8HAADsWvkDAGAXHtr+AAC4S5izs5+2PwAAbkPlDwCAyyp/wh8AAJed86ftDwCAy1D5AwBgQdsfAACX8Tg8/Gn7AwBgE3/4wx/M9QYnbmlpad79VVVVGjdunBISEtSyZUsNHTpUJSUlfr8O4Q8AQAMf6RuozV8XXHCBDh486N3Wrl3r3Tdx4kStWLFCS5cu1Zo1a3TgwAENGTLE79eg7Q8AgI0q4+bNmyspKemk8fLycj377LNasmSJ+vXrZ44tWrRInTt31rp169SrV69GvwaVPwAAFkbBHqiturpaFRUVPpsx9n127typlJQUdejQQSNGjFBRUZE5vmnTJtXU1CgzM9N7rHFKIDU1VQUFBfIH4Q8AQBDl5eUpNjbWZzPGGtKzZ08tXrxYK1eu1Pz581VYWKjLL79cR44cUXFxsSIiIhQXF+fzM4mJieY+f9D2BwDA4secq/8+ubm5ysnJ8RmLjIxs8Nj+/ft7v+/SpYv5ZuCss87SSy+9pOjo6IDNifAHACCIl/oZQf99YX8qRpV/3nnnadeuXbr66qt17NgxlZWV+VT/xmr/htYI/BDa/gAA2NTRo0e1e/duJScnKz09XeHh4crPz/fu3759u7kmICMjw6/npfIHAMAmd/i76667NHDgQLPVb1zGd//996tZs2a66aabzLUCY8aMMU8hxMfHKyYmRtnZ2Wbw+7PS30D4AwAQxHP+/ti3b58Z9F9++aVat26tPn36mJfxGd8bZs2apbCwMPPmPsYVA1lZWZo3b57fr+Opr6+vlw1s3X801FMAbOfN3aWhngJgSzl9OwT1+aet3hWw55p69TmyGyp/AABcdm9/wh8AAJd9qh+r/QEAcBkqfwAALDxydulP+AMA4LK2P+EPAIDLwp9z/gAAuAyVPwAAFh6HX+tH+AMAYEHbHwAAOAqVPwAAFg7v+hP+AADY5YN9mgptfwAAXIbKHwAAly34I/wBALBweNeftj8AAG5D5Q8AgEUYH+wDAIC7eJyd/YQ/AABuW/DHOX8AAFyGyh8AAJfd5IfwBwDAwuHZT9sfAAC3ofIHAMCCtj8AAC7jcXb20/YHAMBtqPwBAHBZZUz4AwBg4XF439/pb24AAIAFlT8AABbOrvsJfwAATsKlfgAAuIxHzsY5fwAAXIbKHwAAC4d3/an8AQBo6FK/QG0/1owZM8yfnzBhgnesqqpK48aNU0JCglq2bKmhQ4eqpKTE7+cm/AEAsJkNGzboqaeeUpcuXXzGJ06cqBUrVmjp0qVas2aNDhw4oCFDhvj9/IQ/AAANhGOgNn8dPXpUI0aM0MKFC3X66ad7x8vLy/Xss89q5syZ6tevn9LT07Vo0SK9//77WrdunV+vQfgDABDEtn91dbUqKip8NmPs+xht/QEDBigzM9NnfNOmTaqpqfEZT0tLU2pqqgoKCuQPwh8AgCDKy8tTbGysz2aMNeTvf/+7Nm/e3OD+4uJiRUREKC4uzmc8MTHR3OcPVvsDAGARyMX+ubm5ysnJ8RmLjIw86bi9e/fqjjvu0OrVqxUVFaVgIvwBAAjiB/sYQd9Q2FsZbf3S0lJdcskl3rHa2lq99957mjt3rlatWqVjx46prKzMp/o3VvsnJSX5NSfCHwAAG7jqqqv08ccf+4yNGjXKPK9/9913q127dgoPD1d+fr55iZ9h+/btKioqUkZGhl+vRfgDAGCDBXGtWrXShRde6DPWokUL85r+4+NjxowxTyHEx8crJiZG2dnZZvD36tXLr9ci/AEACGLbP5BmzZqlsLAws/I3rhjIysrSvHnz/H4eT319fb1sYOv+o6GeAmA7b+4uDfUUAFvK6dshqM+//H/9Wz3/QwZ38e98fFPgUj8AAFyGtj8AABY27foHDOEPAIBFWECv9Lcf2v4AALgMlT8AABa0/QEAcBkPbX8AAOAkVP4AAFjQ9gcAwGXCaPsDAAAnofIHAMCCtj8AAC7jIfwBAHAXD+f8AQCAk1D5AwBgEebswp/wBwDAirY/AABwFCp/AAAsWO0PAIDLeGj7AwAAJ6HyBwDAgtX+cJxXlvxZ6/77He0v+pciIiPV6YIu+s/f/F5npp5t7i8tPqDbfzWwwZ+9c+oM9b7y6iaeMdD0PnzjJa1/ZZEuvGqQLht+m3e8ePc2bVj2nEoLP5MnLEwJ7TpqwITpah4RGdL5IrA8Dm/7E/4u9MmWzbp20DCd0+kC1dXV6q/PzNW0yeP0xKKXFRUdrYTWiXrm5VU+P7P69Vf06ot/Ubeel4Vs3kBTKS3crm1r/qn4tu19xo3gf+OJ+9S1/4267KbbFdasmb7cu0cep68Og+MQ/i405ZG5Po/H3/2ARg/J1O4d23TBxZeoWbNmOj3+DJ9j1q9916z4o6NPa+LZAk2rpuobvf3MY+p78x3a/I+/+ewrePEpXdhvkLr1v8E7FpfUNgSzRLB5HP5+jgV/0NeVR82vrWJiGtxvvCko3LVdV/Uf1MQzA5re2iVPKrVLD7U9v5vP+DcVZWZHILpVrJbPyNHzOTfptccm6eDOrSGbK4LHE8DNjgh/l6urq9OiJx9X2oUXK7X9OQ0ek//P5Wp7VnvzGMDJdq1/V4eKduvSIaNO2lfxxUHz68YVf1Xa5dfqlxMe1Bmp5+j1mbkqL9kfgtkimMI8noBtrgj/vXv3avTo0T94THV1tSoqKny2Y9XVgZ4KGmHhEzNUVLhbOVPyGtxfXV2l/85fSdUPxzv61Rd6/+9Pqd+tk9U8POKk/fX19ebXzn1/qbTLrjGDv/eNv1VcYlt99j9vhmDGgI3C/6uvvtJzzz33g8fk5eUpNjbWZ3tm7h8DPRWcwsInHtGmdWv1wMynzEV+DSlYk69j1VW64pr/1+TzA5rSF5/v1DdHyvT/Hxyvp387wNwO7vhYW99+zfw+OibOPO70lFSfn4tLTtXRL0tDNGsEi8fhbX+/F/y99tprP7h/z549p3yO3Nxc5eTk+IztOlTj71TwIxkVzDNzHtX6te/ogVlPKzH5zO899u03XlX33lcoNu70Jp0j0NTO7NxVw/4w32fs3UUzFZfcTl2vHaaY1sk6LS5B5cX7fI4pL9mndhf2aOLZIug8cjS/w3/w4MHmZS3HW2ANOdVlL5GRkeZ2oogj3y06Q9O0+o1W/j3TZyr6tNN0+KtD5vhpLVoqMjLKe9zB/Xv16f9u1r15c0I4W6BpRESdpvgzv7vXxXHNI6MU2aKVd/zirKHa9NoLSmjX3ry+f8f7b6mseJ+uvu3eEM0aaKLwT05O1rx58zRoUMPngD/66COlp6f/yOmgKax67WXz69SJY33Gx02+X/2uvc6n6k9o3UYXd+/V5HME7KhL5n+otqZG77/4tKorjyihXQcNmPiQYtukhHpqCDCPw0t/T/0PlfANuO6669S1a1dNmzatwf1btmxRt27dzFXk/ti6n8ofsHpzN+eSgYbk9O0Q1Odfv6c8YM91aYdY/ewr/0mTJqmysvJ7959zzjl65513fuq8AACAXcL/8ssv/8H9LVq00BVXXPFT5gQAQEh55Gzc5AcAAJtc6zd//nx16dJFMTEx5paRkaE33njDu7+qqkrjxo1TQkKCWrZsqaFDh6qkpMS/FyH8AQCwj7Zt22rGjBnatGmTNm7cqH79+pkL7D/55BNz/8SJE7VixQotXbpUa9as0YEDBzRkyJDgL/gLFhb8ASdjwR8QmgV/GwsrAvZc3ds3/LkpjRUfH6/HHntM119/vVq3bq0lS5aY3xs+++wzde7cWQUFBerVq/FXZvGpfgAAWATylvzGLe2N7VT3u7Gqra01K3xjkb3R/je6ATU1NcrMzPQek5aWptTUVL/Dn7Y/AABBPOXf0C3tjbHv8/HHH5vn8403B7fddpuWLVum888/X8XFxYqIiFBc3He3mj4uMTHR3OcPKn8AAIKooVva/1DV36lTJ/OGeeXl5Xr55Zc1cuRI8/x+IBH+AABYBbDt35gW/4mM6t64Z47BuGPuhg0b9MQTT+jGG2/UsWPHVFZW5lP9G6v9k5KS/JoTbX8AABq4vW+g/vmpjDvmGmsGjDcC4eHhys/P9+7bvn27ioqKzDUB/qDyBwDARqcI+vfvby7iO3LkiLmy/91339WqVavMtQJjxowxTyEYVwAY9wHIzs42g9+fxX4Gwh8AgCCu9vdHaWmpbr75Zh08eNAMe+OGP0bwX3311eb+WbNmKSwszLy5j9ENyMrKMj9sz19c5w/YGNf5A6G5zn9L0ZGAPdfFqa1kN5zzBwDAZWj7AwDgsk/2IfwBALAIxCp9O6PtDwCAy1D5AwBgk9X+TYXwBwDAwuHZT/gDAOC29OecPwAALkPlDwCAy1b7E/4AALhswR9tfwAAXIbKHwAAC4cX/oQ/AABuS3/a/gAAuAyVPwAAFqz2BwDAZTzOzn7a/gAAuA2VPwAAFg4v/Al/AADclv6EPwAALlvwxzl/AABchsofAACXrfYn/AEAsHB49tP2BwDAbaj8AQBwWelP+AMAYMFqfwAA4ChU/gAAWLDaHwAAl/HI2Wj7AwDgMlT+AAC4rPQn/AEAcNlqf8IfAACXLfjjnD8AAC5D+AMAYOEJ4OaPvLw89ejRQ61atVKbNm00ePBgbd++3eeYqqoqjRs3TgkJCWrZsqWGDh2qkpISv16H8AcAoIG2f6A2f6xZs8YM9nXr1mn16tWqqanRNddco8rKSu8xEydO1IoVK7R06VLz+AMHDmjIkCF+vY6nvr6+Xjawdf/RUE8BsJ03d5eGegqALeX07RDU5993uDpgz9X29Mgf/bNffPGF2QEwQr5v374qLy9X69attWTJEl1//fXmMZ999pk6d+6sgoIC9erVq1HPS+UPAEAQG//V1dWqqKjw2YyxxjDC3hAfH29+3bRpk9kNyMzM9B6Tlpam1NRUM/wbi/AHACCIbX/jPH5sbKzPZoydSl1dnSZMmKDLLrtMF154oTlWXFysiIgIxcXF+RybmJho7mssLvUDACCIcnNzlZOT4zMWGXnqUwHGuf+tW7dq7dq1AZ8T4Q8AgEUgL/M3gr4xYX+i8ePH6/XXX9d7772ntm3beseTkpJ07NgxlZWV+VT/xmp/Y19j0fYHAMAmq/2NNfhG8C9btkxvv/222rdv77M/PT1d4eHhys/P944ZlwIWFRUpIyOj0a9D5Q8AgE0YrX5jJf+rr75qXut//Dy+sU4gOjra/DpmzBjzNIKxCDAmJkbZ2dlm8Dd2pb+B8AcAwCb39p8/f7759corr/QZX7RokW655Rbz+1mzZiksLMy8uY9x1UBWVpbmzZvn1+twnT9gY1znD4TmOv/iipqAPVdSTLjshsofAAALh3+uDwv+AABwGyp/AABc9pG+hD8AADZZ8NdUaPsDAOAyVP4AAFg5u/An/AEAcFn20/YHAMBtqPwBALBgtT8AAC7jcXjjn7Y/AAAuQ+UPAIDL2v5U/gAAuAyVPwAAFlT+AADAUaj8AQBw2Wp/wh8AAAva/gAAwFGo/AEAsHB44U/4AwDgtvSn7Q8AgMtQ+QMAYMFqfwAAXMbj7Oyn7Q8AgNtQ+QMAYOHwwp/wBwDAbelP+AMA4LIFf5zzBwDAZaj8AQBw2Wp/T319fX2oJwH7qK6uVl5ennJzcxUZGRnq6QC2wN8FnIbwh4+KigrFxsaqvLxcMTExoZ4OYAv8XcBpOOcPAIDLEP4AALgM4Q8AgMsQ/vBhLGa6//77WdQEnIC/CzgNC/4AAHAZKn8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/eD355JM6++yzFRUVpZ49e2r9+vWhnhIQUu+9954GDhyolJQUeTweLV++PNRTAgKC8IfpxRdfVE5Ojnk50+bNm3XxxRcrKytLpaWloZ4aEDKVlZXm34LxxhhwEi71g8mo9Hv06KG5c+eaj+vq6tSuXTtlZ2frnnvuCfX0gJAzKv9ly5Zp8ODBoZ4K8JNR+UPHjh3Tpk2blJmZ6R0LCwszHxcUFIR0bgCAwCP8oUOHDqm2tlaJiYk+48bj4uLikM0LABAchD8AAC5D+ENnnHGGmjVrppKSEp9x43FSUlLI5gUACA7CH4qIiFB6erry8/O9Y8aCP+NxRkZGSOcGAAi85kF4TvwMGZf5jRw5Ut27d9ell16q2bNnm5c5jRo1KtRTA0Lm6NGj2rVrl/dxYWGhPvroI8XHxys1NTWkcwN+Ci71g5dxmd9jjz1mLvLr2rWr5syZY14CCLjVu+++q1/84hcnjRtvlBcvXhySOQGBQPgDAOAynPMHAMBlCH8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/AABchvAHAMBlCH8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/AADkLv8HeQeq6GDOib4AAAAASUVORK5CYII=",
|
529 |
"text/plain": [
|
530 |
"<Figure size 640x480 with 2 Axes>"
|
531 |
]
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
18 |
},
|
19 |
{
|
20 |
"cell_type": "code",
|
21 |
+
"execution_count": 6,
|
22 |
"metadata": {},
|
23 |
"outputs": [],
|
24 |
"source": [
|
|
|
28 |
},
|
29 |
{
|
30 |
"cell_type": "code",
|
31 |
+
"execution_count": 7,
|
32 |
"metadata": {},
|
33 |
"outputs": [],
|
34 |
"source": [
|
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
+
"execution_count": 8,
|
52 |
"metadata": {},
|
53 |
"outputs": [],
|
54 |
"source": [
|
|
|
60 |
},
|
61 |
{
|
62 |
"cell_type": "code",
|
63 |
+
"execution_count": 9,
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
66 |
{
|
67 |
"data": {
|
68 |
"text/html": [
|
69 |
+
"<style>#sk-container-id-1 {\n",
|
70 |
" /* Definition of color scheme common for light and dark mode */\n",
|
71 |
" --sklearn-color-text: #000;\n",
|
72 |
" --sklearn-color-text-muted: #666;\n",
|
|
|
97 |
" }\n",
|
98 |
"}\n",
|
99 |
"\n",
|
100 |
+
"#sk-container-id-1 {\n",
|
101 |
" color: var(--sklearn-color-text);\n",
|
102 |
"}\n",
|
103 |
"\n",
|
104 |
+
"#sk-container-id-1 pre {\n",
|
105 |
" padding: 0;\n",
|
106 |
"}\n",
|
107 |
"\n",
|
108 |
+
"#sk-container-id-1 input.sk-hidden--visually {\n",
|
109 |
" border: 0;\n",
|
110 |
" clip: rect(1px 1px 1px 1px);\n",
|
111 |
" clip: rect(1px, 1px, 1px, 1px);\n",
|
|
|
117 |
" width: 1px;\n",
|
118 |
"}\n",
|
119 |
"\n",
|
120 |
+
"#sk-container-id-1 div.sk-dashed-wrapped {\n",
|
121 |
" border: 1px dashed var(--sklearn-color-line);\n",
|
122 |
" margin: 0 0.4em 0.5em 0.4em;\n",
|
123 |
" box-sizing: border-box;\n",
|
|
|
125 |
" background-color: var(--sklearn-color-background);\n",
|
126 |
"}\n",
|
127 |
"\n",
|
128 |
+
"#sk-container-id-1 div.sk-container {\n",
|
129 |
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
130 |
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
131 |
" so we also need the `!important` here to be able to override the\n",
|
|
|
135 |
" position: relative;\n",
|
136 |
"}\n",
|
137 |
"\n",
|
138 |
+
"#sk-container-id-1 div.sk-text-repr-fallback {\n",
|
139 |
" display: none;\n",
|
140 |
"}\n",
|
141 |
"\n",
|
|
|
151 |
"\n",
|
152 |
"/* Parallel-specific style estimator block */\n",
|
153 |
"\n",
|
154 |
+
"#sk-container-id-1 div.sk-parallel-item::after {\n",
|
155 |
" content: \"\";\n",
|
156 |
" width: 100%;\n",
|
157 |
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
158 |
" flex-grow: 1;\n",
|
159 |
"}\n",
|
160 |
"\n",
|
161 |
+
"#sk-container-id-1 div.sk-parallel {\n",
|
162 |
" display: flex;\n",
|
163 |
" align-items: stretch;\n",
|
164 |
" justify-content: center;\n",
|
|
|
166 |
" position: relative;\n",
|
167 |
"}\n",
|
168 |
"\n",
|
169 |
+
"#sk-container-id-1 div.sk-parallel-item {\n",
|
170 |
" display: flex;\n",
|
171 |
" flex-direction: column;\n",
|
172 |
"}\n",
|
173 |
"\n",
|
174 |
+
"#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
|
175 |
" align-self: flex-end;\n",
|
176 |
" width: 50%;\n",
|
177 |
"}\n",
|
178 |
"\n",
|
179 |
+
"#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
|
180 |
" align-self: flex-start;\n",
|
181 |
" width: 50%;\n",
|
182 |
"}\n",
|
183 |
"\n",
|
184 |
+
"#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
|
185 |
" width: 0;\n",
|
186 |
"}\n",
|
187 |
"\n",
|
188 |
"/* Serial-specific style estimator block */\n",
|
189 |
"\n",
|
190 |
+
"#sk-container-id-1 div.sk-serial {\n",
|
191 |
" display: flex;\n",
|
192 |
" flex-direction: column;\n",
|
193 |
" align-items: center;\n",
|
|
|
205 |
"\n",
|
206 |
"/* Pipeline and ColumnTransformer style (default) */\n",
|
207 |
"\n",
|
208 |
+
"#sk-container-id-1 div.sk-toggleable {\n",
|
209 |
" /* Default theme specific background. It is overwritten whether we have a\n",
|
210 |
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
211 |
" background-color: var(--sklearn-color-background);\n",
|
212 |
"}\n",
|
213 |
"\n",
|
214 |
"/* Toggleable label */\n",
|
215 |
+
"#sk-container-id-1 label.sk-toggleable__label {\n",
|
216 |
" cursor: pointer;\n",
|
217 |
" display: flex;\n",
|
218 |
" width: 100%;\n",
|
|
|
225 |
" gap: 0.5em;\n",
|
226 |
"}\n",
|
227 |
"\n",
|
228 |
+
"#sk-container-id-1 label.sk-toggleable__label .caption {\n",
|
229 |
" font-size: 0.6rem;\n",
|
230 |
" font-weight: lighter;\n",
|
231 |
" color: var(--sklearn-color-text-muted);\n",
|
232 |
"}\n",
|
233 |
"\n",
|
234 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
|
235 |
" /* Arrow on the left of the label */\n",
|
236 |
" content: \"▸\";\n",
|
237 |
" float: left;\n",
|
|
|
239 |
" color: var(--sklearn-color-icon);\n",
|
240 |
"}\n",
|
241 |
"\n",
|
242 |
+
"#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
|
243 |
" color: var(--sklearn-color-text);\n",
|
244 |
"}\n",
|
245 |
"\n",
|
246 |
"/* Toggleable content - dropdown */\n",
|
247 |
"\n",
|
248 |
+
"#sk-container-id-1 div.sk-toggleable__content {\n",
|
249 |
" max-height: 0;\n",
|
250 |
" max-width: 0;\n",
|
251 |
" overflow: hidden;\n",
|
|
|
254 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
255 |
"}\n",
|
256 |
"\n",
|
257 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
|
258 |
" /* fitted */\n",
|
259 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
260 |
"}\n",
|
261 |
"\n",
|
262 |
+
"#sk-container-id-1 div.sk-toggleable__content pre {\n",
|
263 |
" margin: 0.2em;\n",
|
264 |
" border-radius: 0.25em;\n",
|
265 |
" color: var(--sklearn-color-text);\n",
|
|
|
267 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
268 |
"}\n",
|
269 |
"\n",
|
270 |
+
"#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
|
271 |
" /* unfitted */\n",
|
272 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
273 |
"}\n",
|
274 |
"\n",
|
275 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
276 |
" /* Expand drop-down */\n",
|
277 |
" max-height: 200px;\n",
|
278 |
" max-width: 100%;\n",
|
279 |
" overflow: auto;\n",
|
280 |
"}\n",
|
281 |
"\n",
|
282 |
+
"#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
283 |
" content: \"▾\";\n",
|
284 |
"}\n",
|
285 |
"\n",
|
286 |
"/* Pipeline/ColumnTransformer-specific style */\n",
|
287 |
"\n",
|
288 |
+
"#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
289 |
" color: var(--sklearn-color-text);\n",
|
290 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
291 |
"}\n",
|
292 |
"\n",
|
293 |
+
"#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
294 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
295 |
"}\n",
|
296 |
"\n",
|
297 |
"/* Estimator-specific style */\n",
|
298 |
"\n",
|
299 |
"/* Colorize estimator box */\n",
|
300 |
+
"#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
301 |
" /* unfitted */\n",
|
302 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
303 |
"}\n",
|
304 |
"\n",
|
305 |
+
"#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
306 |
" /* fitted */\n",
|
307 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
308 |
"}\n",
|
309 |
"\n",
|
310 |
+
"#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
|
311 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
312 |
" /* The background is the default theme color */\n",
|
313 |
" color: var(--sklearn-color-text-on-default-background);\n",
|
314 |
"}\n",
|
315 |
"\n",
|
316 |
"/* On hover, darken the color of the background */\n",
|
317 |
+
"#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
|
318 |
" color: var(--sklearn-color-text);\n",
|
319 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
320 |
"}\n",
|
321 |
"\n",
|
322 |
"/* Label box, darken color on hover, fitted */\n",
|
323 |
+
"#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
324 |
" color: var(--sklearn-color-text);\n",
|
325 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
326 |
"}\n",
|
327 |
"\n",
|
328 |
"/* Estimator label */\n",
|
329 |
"\n",
|
330 |
+
"#sk-container-id-1 div.sk-label label {\n",
|
331 |
" font-family: monospace;\n",
|
332 |
" font-weight: bold;\n",
|
333 |
" display: inline-block;\n",
|
334 |
" line-height: 1.2em;\n",
|
335 |
"}\n",
|
336 |
"\n",
|
337 |
+
"#sk-container-id-1 div.sk-label-container {\n",
|
338 |
" text-align: center;\n",
|
339 |
"}\n",
|
340 |
"\n",
|
341 |
"/* Estimator-specific */\n",
|
342 |
+
"#sk-container-id-1 div.sk-estimator {\n",
|
343 |
" font-family: monospace;\n",
|
344 |
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
345 |
" border-radius: 0.25em;\n",
|
|
|
349 |
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
350 |
"}\n",
|
351 |
"\n",
|
352 |
+
"#sk-container-id-1 div.sk-estimator.fitted {\n",
|
353 |
" /* fitted */\n",
|
354 |
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
355 |
"}\n",
|
356 |
"\n",
|
357 |
"/* on hover */\n",
|
358 |
+
"#sk-container-id-1 div.sk-estimator:hover {\n",
|
359 |
" /* unfitted */\n",
|
360 |
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
361 |
"}\n",
|
362 |
"\n",
|
363 |
+
"#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
|
364 |
" /* fitted */\n",
|
365 |
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
366 |
"}\n",
|
|
|
448 |
"\n",
|
449 |
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
450 |
"\n",
|
451 |
+
"#sk-container-id-1 a.estimator_doc_link {\n",
|
452 |
" float: right;\n",
|
453 |
" font-size: 1rem;\n",
|
454 |
" line-height: 1em;\n",
|
|
|
463 |
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
464 |
"}\n",
|
465 |
"\n",
|
466 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted {\n",
|
467 |
" /* fitted */\n",
|
468 |
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
469 |
" color: var(--sklearn-color-fitted-level-1);\n",
|
470 |
"}\n",
|
471 |
"\n",
|
472 |
"/* On hover */\n",
|
473 |
+
"#sk-container-id-1 a.estimator_doc_link:hover {\n",
|
474 |
" /* unfitted */\n",
|
475 |
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
476 |
" color: var(--sklearn-color-background);\n",
|
477 |
" text-decoration: none;\n",
|
478 |
"}\n",
|
479 |
"\n",
|
480 |
+
"#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
|
481 |
" /* fitted */\n",
|
482 |
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
483 |
"}\n",
|
484 |
+
"</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestClassifier(random_state=1)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>RandomForestClassifier</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.RandomForestClassifier.html\">?<span>Documentation for RandomForestClassifier</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\"><pre>RandomForestClassifier(random_state=1)</pre></div> </div></div></div></div>"
|
485 |
],
|
486 |
"text/plain": [
|
487 |
"RandomForestClassifier(random_state=1)"
|
488 |
]
|
489 |
},
|
490 |
+
"execution_count": 9,
|
491 |
"metadata": {},
|
492 |
"output_type": "execute_result"
|
493 |
}
|
|
|
500 |
},
|
501 |
{
|
502 |
"cell_type": "code",
|
503 |
+
"execution_count": 10,
|
504 |
"metadata": {},
|
505 |
"outputs": [
|
506 |
{
|
|
|
525 |
},
|
526 |
{
|
527 |
"data": {
|
528 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJNNJREFUeJzt3Qt4FPW9//HPBnITSGIi5CJEAZXgBcGAEES0GI2UP8IBUSw9ImCpFlIhCpqjYEU0eCkgRUDRgtbSKv4FxVYQo+LhGOSmHFHkmhpuSURJAtGEmOQ8Mz5s2SFKVnez48z75TNPsr+Z7P7iY/zs9zu/mfXU19fXCwAAuEZYqCcAAACaFuEPAIDLEP4AALgM4Q8AgMsQ/gAAuAzhDwCAyxD+AAC4DOEPAIDLEP4AALhMc9lEdLfxoZ4CYDuHN8wN9RQAW4pq/vPJpG8+tN/fsW3CHwAA2/A4uzHu7N8OAACchMofAAArj0dORvgDAOCytj/hDwCAyyp/Z7+1AQAAJ6HyBwDAirY/AAAu46HtDwAAHITKHwAAK9r+AAC4jIe2PwAAcBAqfwAAXNb2d/ZvBwDAj237ewK0+eHIkSOaMGGCzjrrLEVHR6t3797asGGDd399fb2mTp2q5ORkc39mZqZ27tzp969H+AMAYBO33nqrVq9erb/85S/6+OOPdc0115gBv3//fnP/o48+qjlz5mjBggX64IMP1KJFC2VlZamqqsqv1/HUG28jbCCQn50MOMXhDfb7HHDADqKCfNI6us+UgD3XN2sfbNxx33yjVq1a6dVXX9WAAQO84+np6erfv78efPBBpaSk6M4779Rdd91l7isvL1diYqIWL16s4cOHN3pOVP4AAASx7V9dXa2KigqfzRiz+vbbb1VbW6uoqCifcaO9v3btWhUWFqq4uNjsBBwXGxurnj17qqCgQP4g/AEAaGjBX4C2vLw8M6RP3IwxK6Pqz8jIMCv8AwcOmG8EXnjhBTPYDx48aAa/waj0T2Q8Pr6vsQh/AACCKDc312zPn7gZYw0xzvUbZ+PPPPNMRUZGmuf3b7rpJoWFBTauCX8AAIJY+RshHhMT47MZYw3p2LGj1qxZo6NHj2rv3r1av369ampq1KFDByUlJZnHlJSU+PyM8fj4vsYi/AEAsArzBG77EYxV/MblfIcPH9aqVas0aNAgtW/f3gz5/Px873HG+gFj1b9xusAf3OQHAACbMILeaPt36tRJu3bt0qRJk5SWlqZRo0bJ4/GY9wCYPn26zj33XPPNwJQpU8wrAAYPHuzX6xD+AADY5A5/x9cD7Nu3T/Hx8Ro6dKgeeughhYeHm/snT56syspKjR07VmVlZerTp49Wrlx50hUCp8J1/oCNcZ0/EKLr/K96OGDP9U3+f8luOOcPAIDL0PYHAMBlH+xD+AMAYOXnB/L83Dj7rQ0AADgJlT8AAFa0/QEAcBmPs9v+hD8AAC6r/J392wEAgJNQ+QMAYEXbHwAAl/E4uzHu7N8OAACchMofAAAr2v4AALiMx9mNcWf/dgAA4CRU/gAAuKzyJ/wBAHDZOX9nv7UBAAAnofIHAMCKtj8AAC7jcXbbn/AHAMBllb+zfzsAAHASKn8AAKxo+wMA4C4eh4c/bX8AAFyGyh8AAJdV/oQ/AABWzs5+2v4AALgNlT8AABa0/QEAcBmPw8Oftj8AAC5D5Q8AgMsqf8IfAAALwh8AALfxyNE45w8AgMsQ/gAANND2D9Tmj9raWk2ZMkXt27dXdHS0OnbsqAcffFD19fXeY4zvp06dquTkZPOYzMxM7dy506/XIfwBALBJ+D/yyCOaP3++5s6dq23btpmPH330Uf3pT3/yHmM8njNnjhYsWKAPPvhALVq0UFZWlqqqqhr9OpzzBwDAJt5//30NGjRIAwYMMB+fffbZ+tvf/qb169d7q/7Zs2frvvvuM48zPP/880pMTNTy5cs1fPjwRr0OlT8AAEGs/Kurq1VRUeGzGWMN6d27t/Lz87Vjxw7z8ZYtW7R27Vr179/ffFxYWKji4mKz1X9cbGysevbsqYKCAjUW4Q8AQBDDPy8vzwzoEzdjrCH33HOPWb2npaUpPDxc3bp104QJEzRixAhzvxH8BqPSP5Hx+Pi+xqDtDwBAEOXm5ionJ8dnLDIyssFjX3rpJf31r3/VkiVLdMEFF+ijjz4ywz8lJUUjR44M2JwIfwAAgnidvxH03xf2VpMmTfJW/4aLLrpIn3/+udkpMMI/KSnJHC8pKTFX+x9nPO7atWuj50TbHwAAm6z2//rrrxUW5hvNzZo1U11dnfm9cQmg8QbAWBdwnLGGwFj1n5GR0ejXofIHAMAmBg4cqIceekipqalm2//DDz/UzJkzNXr0aHO/8WbCOA0wffp0nXvuueabAeO+AMZpgcGDBzf6dQh/AABscm9/43p+I8x/97vfqbS01Az13/72t+ZNfY6bPHmyKisrNXbsWJWVlalPnz5auXKloqKiGv06nvoTbxsUQtHdxod6CoDtHN4wN9RTAGwpKsila5vRLwXsuUr/fIPshsofAAArPtgHAAA4CZU/AAA2OeffVAh/AABcFv60/QEAcBkqfwAAXFb5E/4AALgs/Gn7AwDgMlT+AABYObvwJ/wBALCi7Q8AAByFyh8AAJdV/oQ/AAAWhD8AAG7jkaNxzh8AAJeh8gcAwGVtfyp/l2p5WqQeu2uotv9zmr4qmKl3Fuco/fzUBo+dc+9wffPhXI3/1ZVNPk+gKW3auEHZv7tNmVf20cUXdNLb+W9599XU1GjWHx/T0MED1bN7V/OYe3Mnq7S0JKRzRvDC3xOgzY4If5eaP/VX6tcrTaPve07db3hYbxV8pn8syFZK61if4677RRddetHZOlBaFrK5Ak3lm2++VqdOnZR73/0n7auqqtJn2z7V2Ntu14tLX9HMJ+bqX4WFumP87SGZK/BT0PZ3oajIcA2+qquGTXxa/7N5tzn20FP/1C/7XqjfDLtcD8x73Rwz3gjMvHuYBv7uSS37E/+Dg/P1ufwKc2tIq1at9NQzi3zGcu+dohHDh+nggQNKTklpolmiKXhsWrEHCuHvQs2bhal582aqOlbjM15VXaPe3Tp6/8N/dvrNmvVcvrbtKQ7RTAF7O3r0qPm30iomJtRTQYB5CH9fhw4d0p///GcVFBSouPi7UEhKSlLv3r11yy23qHXr1sGYJwLo6NfVWrdlj3J/01/bC0tU8mWFbri2u3p2aa/de78wj7lz1NX6trZOT/7t3VBPF7Cl6upqzZ75uPr/coBatmwZ6ukAwTvnv2HDBp133nmaM2eOYmNj1bdvX3MzvjfG0tLStHHjxkb90VRUVPhs9XW1/s0cP8no+56X8cZ2z5sPqfyD2Rp30xV6aeVG1dXVq1vndhp305Uae/8LoZ4mYEvG4r9JOXeovr5e9059INTTQTB4Arj93Cv/7OxsDRs2TAsWLDipJWL8Edx2223mMUZX4Ifk5eXpgQd8/2CaJfZQePKl/kwHP0HhvkO65tYndFpUhGJaRqn4UIX+MmOUCvcf0mXdOqpNfEvt+Oc07/HGaYIZOUM0fsQvlDbg5MVQgKuC/84J5nn+hYueo+p3KA9t/3/bsmWLFi9e3OC/FGNs4sSJ6tat2ymfJzc3Vzk5OT5jbS6/25+pIEC+rjpmbnGtopXZu7Punf2qlud/pLc/2O5z3Ip547TkH+v1/KvrQjZXwC7BX/T553pm0fOKizs91FMCgh/+xrn99evXm+39hhj7EhMTT/k8kZGR5nYiT1gzf6aCnygzo7PZ9t/xr1J1bNdaD08crB2FJXr+tQJ9+22dviqv9Dm+5ttalRyq0M7PS0M2ZyDYvq6sVFFRkffx/n379Nm2beapzTNat9ZdE3+vbds+1Z+efEp1tbU69MV3a2SM/eERESGcOQLNQ+X/b3fddZfGjh2rTZs26aqrrvIGfUlJifLz87Vw4UI9/vjjwZorAii2ZZSmZV+nMxPj9FX513o1/yPd/+QKM/gBt/rkk626ddTN3sePP5pnfr1u0H/otnHj9e47b5uPbxg6yOfnjC5Aj0t7NvFsEUweZ2e/PPXGyXo/vPjii5o1a5b5BqC29rtFes2aNVN6errZyr/hhht+1ESiu43/UT8HONnhDXNDPQXAlqKCfKH6uZNWBuy5dj52rezG7399N954o7kZ576My/4MZ5xxhsLDw4MxPwAAEGA/+r2TEfbJycmBnQ0AADbgcXjbnzv8AQDgsgV/fLAPAAAuQ+UPAICFwwt/wh8AAKuwMGenP21/AABchvAHAKCBtn+gNn+cffbZ5mJD6zZu3Dhzf1VVlfl9QkKC+bkSQ4cONW+05y/CHwAAi4YC+Mdu/n567sGDB73b6tWrzXHjQ/UMxmforFixQkuXLtWaNWt04MABDRkyRP7inD8AADbRunVrn8czZsxQx44ddcUVV6i8vFzPPvuslixZon79+pn7Fy1apM6dO2vdunXq1atXo1+Hyh8AgCC2/aurq1VRUeGzGWOncuzYMb3wwgsaPXq02UEwbqtv3F03MzPTe4zxQXupqakqKCiQPwh/AACC2PbPy8szP/nxxM0YO5Xly5errKxMt9xyi/m4uLhYERERiouL8znO+JA9Y58/aPsDABDEO/zl5uaaH3x3IuvH2jfEaPH3799fKSkpCjTCHwCAIDKCvjFhf6LPP/9cb731ll555RXvWFJSknkqwOgGnFj9G6v9jX3+oO0PAIBNLvU7zljI16ZNGw0YMMA7lp6ebn6oXn5+vnds+/btKioqUkZGhl/PT+UPAICNPtinrq7ODP+RI0eqefN/x7SxVmDMmDHmKYT4+HjFxMQoOzvbDH5/VvobCH8AAGzEaPcb1byxyt9q1qxZCgsLM2/uY1wxkJWVpXnz5vn9Gp76+vp62UB0t/GhngJgO4c3zA31FABbigpy6XrJtLcD9lybp353Tb6dUPkDAGCjtn9TYMEfAAAuQ+UPAICFwwt/wh8AACva/gAAwFGo/AEAsHB44U/4AwDgtrY/4Q8AgIXDs59z/gAAuA2VPwAAFrT9AQBwGY+zs5+2PwAAbkPlDwCABW1/AABcxuPs7KftDwCA21D5AwBgQdsfAACX8Tg8/Gn7AwDgMlT+AABYOLzwJ/wBAHBb25/wBwDAwuHZzzl/AADchsofAAAL2v4AALiMx9nZT9sfAAC3ofIHAMAizOGlP+EPAICFw7Oftj8AAG5D5Q8AgAWr/QEAcJkwZ2c/4Q8AgNsqf875AwDgMlT+AABYOLzwJ/wBALDyyNnpT9sfAAAb2b9/v379618rISFB0dHRuuiii7Rx40bv/vr6ek2dOlXJycnm/szMTO3cudOv1yD8AQBoYLV/oDZ/HD58WJdddpnCw8P1xhtv6NNPP9Uf//hHnX766d5jHn30Uc2ZM0cLFizQBx98oBYtWigrK0tVVVWNfh3a/gAA2GS1/yOPPKJ27dpp0aJF3rH27dv7VP2zZ8/Wfffdp0GDBpljzz//vBITE7V8+XINHz68Ua9D5Q8AQBBVV1eroqLCZzPGGvLaa6+pe/fuGjZsmNq0aaNu3bpp4cKF3v2FhYUqLi42W/3HxcbGqmfPniooKGj0nAh/AAAsjMI/UFteXp4Z0CduxlhD9uzZo/nz5+vcc8/VqlWrdPvtt+v3v/+9nnvuOXO/EfwGo9I/kfH4+L7GoO0PAEAQP9UvNzdXOTk5PmORkZENHltXV2dW/g8//LD52Kj8t27dap7fHzlyZMDmROUPAEAQGUEfExPjs31f+Bsr+M8//3yfsc6dO6uoqMj8PikpyfxaUlLic4zx+Pi+xiD8AQAIYtvfH8ZK/+3bt/uM7dixQ2eddZZ38Z8R8vn5+d79xhoCY9V/RkZGo1+Htj8AADZZ7T9x4kT17t3bbPvfcMMNWr9+vZ5++mlzOz6vCRMmaPr06ea6AOPNwJQpU5SSkqLBgwc3+nUIfwAAbHJ73x49emjZsmXmOoFp06aZ4W5c2jdixAjvMZMnT1ZlZaXGjh2rsrIy9enTRytXrlRUVFSjX8dTb1w0aAPR3caHegqA7RzeMDfUUwBsKSrIpeuwxZsD9lxLb7lEdkPlDwBAEFf72xHhDwCAhbOjn9X+AAC4DpU/AAA2We3fVAh/AAAs/P00vp8b2v4AALgMlT8AABa0/QEAcBmPs7Oftj8AAG5D5Q8AgAVtfwAAXCbM2dlP+AMA4LbKn3P+AAC4DJU/AAAWzq77CX8AAFz3qX60/QEAcBkqfwAALBxe+BP+AABYsdofAAA4CpU/AAAWDi/8CX8AAKxY7Q8AAByFyh8AAAuHF/6EPwAAblvtb5vw3/D6jFBPAbCdee/vCfUUAFvK6dshqM8fJmdz+u8HAADsWvkDAGAXHtr+AAC4S5izs5+2PwAAbkPlDwCAyyp/wh8AAJed86ftDwCAy1D5AwBgQdsfAACX8Tg8/Gn7AwBgE3/4wx/M9QYnbmlpad79VVVVGjdunBISEtSyZUsNHTpUJSUlfr8O4Q8AQAMf6RuozV8XXHCBDh486N3Wrl3r3Tdx4kStWLFCS5cu1Zo1a3TgwAENGTLE79eg7Q8AgI0q4+bNmyspKemk8fLycj377LNasmSJ+vXrZ44tWrRInTt31rp169SrV69GvwaVPwAAFkbBHqiturpaFRUVPpsx9n127typlJQUdejQQSNGjFBRUZE5vmnTJtXU1CgzM9N7rHFKIDU1VQUFBfIH4Q8AQBDl5eUpNjbWZzPGGtKzZ08tXrxYK1eu1Pz581VYWKjLL79cR44cUXFxsSIiIhQXF+fzM4mJieY+f9D2BwDA4secq/8+ubm5ysnJ8RmLjIxs8Nj+/ft7v+/SpYv5ZuCss87SSy+9pOjo6IDNifAHACCIl/oZQf99YX8qRpV/3nnnadeuXbr66qt17NgxlZWV+VT/xmr/htYI/BDa/gAA2NTRo0e1e/duJScnKz09XeHh4crPz/fu3759u7kmICMjw6/npfIHAMAmd/i76667NHDgQLPVb1zGd//996tZs2a66aabzLUCY8aMMU8hxMfHKyYmRtnZ2Wbw+7PS30D4AwAQxHP+/ti3b58Z9F9++aVat26tPn36mJfxGd8bZs2apbCwMPPmPsYVA1lZWZo3b57fr+Opr6+vlw1s3X801FMAbOfN3aWhngJgSzl9OwT1+aet3hWw55p69TmyGyp/AABcdm9/wh8AAJd9qh+r/QEAcBkqfwAALDxydulP+AMA4LK2P+EPAIDLwp9z/gAAuAyVPwAAFh6HX+tH+AMAYEHbHwAAOAqVPwAAFg7v+hP+AADY5YN9mgptfwAAXIbKHwAAly34I/wBALBweNeftj8AAG5D5Q8AgEUYH+wDAIC7eJyd/YQ/AABuW/DHOX8AAFyGyh8AAJfd5IfwBwDAwuHZT9sfAAC3ofIHAMCCtj8AAC7jcXb20/YHAMBtqPwBAHBZZUz4AwBg4XF439/pb24AAIAFlT8AABbOrvsJfwAATsKlfgAAuIxHzsY5fwAAXIbKHwAAC4d3/an8AQBo6FK/QG0/1owZM8yfnzBhgnesqqpK48aNU0JCglq2bKmhQ4eqpKTE7+cm/AEAsJkNGzboqaeeUpcuXXzGJ06cqBUrVmjp0qVas2aNDhw4oCFDhvj9/IQ/AAANhGOgNn8dPXpUI0aM0MKFC3X66ad7x8vLy/Xss89q5syZ6tevn9LT07Vo0SK9//77WrdunV+vQfgDABDEtn91dbUqKip8NmPs+xht/QEDBigzM9NnfNOmTaqpqfEZT0tLU2pqqgoKCuQPwh8AgCDKy8tTbGysz2aMNeTvf/+7Nm/e3OD+4uJiRUREKC4uzmc8MTHR3OcPVvsDAGARyMX+ubm5ysnJ8RmLjIw86bi9e/fqjjvu0OrVqxUVFaVgIvwBAAjiB/sYQd9Q2FsZbf3S0lJdcskl3rHa2lq99957mjt3rlatWqVjx46prKzMp/o3VvsnJSX5NSfCHwAAG7jqqqv08ccf+4yNGjXKPK9/9913q127dgoPD1d+fr55iZ9h+/btKioqUkZGhl+vRfgDAGCDBXGtWrXShRde6DPWokUL85r+4+NjxowxTyHEx8crJiZG2dnZZvD36tXLr9ci/AEACGLbP5BmzZqlsLAws/I3rhjIysrSvHnz/H4eT319fb1sYOv+o6GeAmA7b+4uDfUUAFvK6dshqM+//H/9Wz3/QwZ38e98fFPgUj8AAFyGtj8AABY27foHDOEPAIBFWECv9Lcf2v4AALgMlT8AABa0/QEAcBkPbX8AAOAkVP4AAFjQ9gcAwGXCaPsDAAAnofIHAMCCtj8AAC7jIfwBAHAXD+f8AQCAk1D5AwBgEebswp/wBwDAirY/AABwFCp/AAAsWO0PAIDLeGj7AwAAJ6HyBwDAgtX+cJxXlvxZ6/77He0v+pciIiPV6YIu+s/f/F5npp5t7i8tPqDbfzWwwZ+9c+oM9b7y6iaeMdD0PnzjJa1/ZZEuvGqQLht+m3e8ePc2bVj2nEoLP5MnLEwJ7TpqwITpah4RGdL5IrA8Dm/7E/4u9MmWzbp20DCd0+kC1dXV6q/PzNW0yeP0xKKXFRUdrYTWiXrm5VU+P7P69Vf06ot/Ubeel4Vs3kBTKS3crm1r/qn4tu19xo3gf+OJ+9S1/4267KbbFdasmb7cu0cep68Og+MQ/i405ZG5Po/H3/2ARg/J1O4d23TBxZeoWbNmOj3+DJ9j1q9916z4o6NPa+LZAk2rpuobvf3MY+p78x3a/I+/+ewrePEpXdhvkLr1v8E7FpfUNgSzRLB5HP5+jgV/0NeVR82vrWJiGtxvvCko3LVdV/Uf1MQzA5re2iVPKrVLD7U9v5vP+DcVZWZHILpVrJbPyNHzOTfptccm6eDOrSGbK4LHE8DNjgh/l6urq9OiJx9X2oUXK7X9OQ0ek//P5Wp7VnvzGMDJdq1/V4eKduvSIaNO2lfxxUHz68YVf1Xa5dfqlxMe1Bmp5+j1mbkqL9kfgtkimMI8noBtrgj/vXv3avTo0T94THV1tSoqKny2Y9XVgZ4KGmHhEzNUVLhbOVPyGtxfXV2l/85fSdUPxzv61Rd6/+9Pqd+tk9U8POKk/fX19ebXzn1/qbTLrjGDv/eNv1VcYlt99j9vhmDGgI3C/6uvvtJzzz33g8fk5eUpNjbWZ3tm7h8DPRWcwsInHtGmdWv1wMynzEV+DSlYk69j1VW64pr/1+TzA5rSF5/v1DdHyvT/Hxyvp387wNwO7vhYW99+zfw+OibOPO70lFSfn4tLTtXRL0tDNGsEi8fhbX+/F/y99tprP7h/z549p3yO3Nxc5eTk+IztOlTj71TwIxkVzDNzHtX6te/ogVlPKzH5zO899u03XlX33lcoNu70Jp0j0NTO7NxVw/4w32fs3UUzFZfcTl2vHaaY1sk6LS5B5cX7fI4pL9mndhf2aOLZIug8cjS/w3/w4MHmZS3HW2ANOdVlL5GRkeZ2oogj3y06Q9O0+o1W/j3TZyr6tNN0+KtD5vhpLVoqMjLKe9zB/Xv16f9u1r15c0I4W6BpRESdpvgzv7vXxXHNI6MU2aKVd/zirKHa9NoLSmjX3ry+f8f7b6mseJ+uvu3eEM0aaKLwT05O1rx58zRoUMPngD/66COlp6f/yOmgKax67WXz69SJY33Gx02+X/2uvc6n6k9o3UYXd+/V5HME7KhL5n+otqZG77/4tKorjyihXQcNmPiQYtukhHpqCDCPw0t/T/0PlfANuO6669S1a1dNmzatwf1btmxRt27dzFXk/ti6n8ofsHpzN+eSgYbk9O0Q1Odfv6c8YM91aYdY/ewr/0mTJqmysvJ7959zzjl65513fuq8AACAXcL/8ssv/8H9LVq00BVXXPFT5gQAQEh55Gzc5AcAAJtc6zd//nx16dJFMTEx5paRkaE33njDu7+qqkrjxo1TQkKCWrZsqaFDh6qkpMS/FyH8AQCwj7Zt22rGjBnatGmTNm7cqH79+pkL7D/55BNz/8SJE7VixQotXbpUa9as0YEDBzRkyJDgL/gLFhb8ASdjwR8QmgV/GwsrAvZc3ds3/LkpjRUfH6/HHntM119/vVq3bq0lS5aY3xs+++wzde7cWQUFBerVq/FXZvGpfgAAWATylvzGLe2N7VT3u7Gqra01K3xjkb3R/je6ATU1NcrMzPQek5aWptTUVL/Dn7Y/AABBPOXf0C3tjbHv8/HHH5vn8403B7fddpuWLVum888/X8XFxYqIiFBc3He3mj4uMTHR3OcPKn8AAIKooVva/1DV36lTJ/OGeeXl5Xr55Zc1cuRI8/x+IBH+AABYBbDt35gW/4mM6t64Z47BuGPuhg0b9MQTT+jGG2/UsWPHVFZW5lP9G6v9k5KS/JoTbX8AABq4vW+g/vmpjDvmGmsGjDcC4eHhys/P9+7bvn27ioqKzDUB/qDyBwDARqcI+vfvby7iO3LkiLmy/91339WqVavMtQJjxowxTyEYVwAY9wHIzs42g9+fxX4Gwh8AgCCu9vdHaWmpbr75Zh08eNAMe+OGP0bwX3311eb+WbNmKSwszLy5j9ENyMrKMj9sz19c5w/YGNf5A6G5zn9L0ZGAPdfFqa1kN5zzBwDAZWj7AwDgsk/2IfwBALAIxCp9O6PtDwCAy1D5AwBgk9X+TYXwBwDAwuHZT/gDAOC29OecPwAALkPlDwCAy1b7E/4AALhswR9tfwAAXIbKHwAAC4cX/oQ/AABuS3/a/gAAuAyVPwAAFqz2BwDAZTzOzn7a/gAAuA2VPwAAFg4v/Al/AADclv6EPwAALlvwxzl/AABchsofAACXrfYn/AEAsHB49tP2BwDAbaj8AQBwWelP+AMAYMFqfwAA4ChU/gAAWLDaHwAAl/HI2Wj7AwDgMlT+AAC4rPQn/AEAcNlqf8IfAACXLfjjnD8AAC5D+AMAYOEJ4OaPvLw89ejRQ61atVKbNm00ePBgbd++3eeYqqoqjRs3TgkJCWrZsqWGDh2qkpISv16H8AcAoIG2f6A2f6xZs8YM9nXr1mn16tWqqanRNddco8rKSu8xEydO1IoVK7R06VLz+AMHDmjIkCF+vY6nvr6+Xjawdf/RUE8BsJ03d5eGegqALeX07RDU5993uDpgz9X29Mgf/bNffPGF2QEwQr5v374qLy9X69attWTJEl1//fXmMZ999pk6d+6sgoIC9erVq1HPS+UPAEAQG//V1dWqqKjw2YyxxjDC3hAfH29+3bRpk9kNyMzM9B6Tlpam1NRUM/wbi/AHACCIbX/jPH5sbKzPZoydSl1dnSZMmKDLLrtMF154oTlWXFysiIgIxcXF+RybmJho7mssLvUDACCIcnNzlZOT4zMWGXnqUwHGuf+tW7dq7dq1AZ8T4Q8AgEUgL/M3gr4xYX+i8ePH6/XXX9d7772ntm3beseTkpJ07NgxlZWV+VT/xmp/Y19j0fYHAMAmq/2NNfhG8C9btkxvv/222rdv77M/PT1d4eHhys/P944ZlwIWFRUpIyOj0a9D5Q8AgE0YrX5jJf+rr75qXut//Dy+sU4gOjra/DpmzBjzNIKxCDAmJkbZ2dlm8Dd2pb+B8AcAwCb39p8/f7759corr/QZX7RokW655Rbz+1mzZiksLMy8uY9x1UBWVpbmzZvn1+twnT9gY1znD4TmOv/iipqAPVdSTLjshsofAAALh3+uDwv+AABwGyp/AABc9pG+hD8AADZZ8NdUaPsDAOAyVP4AAFg5u/An/AEAcFn20/YHAMBtqPwBALBgtT8AAC7jcXjjn7Y/AAAuQ+UPAIDL2v5U/gAAuAyVPwAAFlT+AADAUaj8AQBw2Wp/wh8AAAva/gAAwFGo/AEAsHB44U/4AwDgtvSn7Q8AgMtQ+QMAYMFqfwAAXMbj7Oyn7Q8AgNtQ+QMAYOHwwp/wBwDAbelP+AMA4LIFf5zzBwDAZaj8AQBw2Wp/T319fX2oJwH7qK6uVl5ennJzcxUZGRnq6QC2wN8FnIbwh4+KigrFxsaqvLxcMTExoZ4OYAv8XcBpOOcPAIDLEP4AALgM4Q8AgMsQ/vBhLGa6//77WdQEnIC/CzgNC/4AAHAZKn8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/eD355JM6++yzFRUVpZ49e2r9+vWhnhIQUu+9954GDhyolJQUeTweLV++PNRTAgKC8IfpxRdfVE5Ojnk50+bNm3XxxRcrKytLpaWloZ4aEDKVlZXm34LxxhhwEi71g8mo9Hv06KG5c+eaj+vq6tSuXTtlZ2frnnvuCfX0gJAzKv9ly5Zp8ODBoZ4K8JNR+UPHjh3Tpk2blJmZ6R0LCwszHxcUFIR0bgCAwCP8oUOHDqm2tlaJiYk+48bj4uLikM0LABAchD8AAC5D+ENnnHGGmjVrppKSEp9x43FSUlLI5gUACA7CH4qIiFB6erry8/O9Y8aCP+NxRkZGSOcGAAi85kF4TvwMGZf5jRw5Ut27d9ell16q2bNnm5c5jRo1KtRTA0Lm6NGj2rVrl/dxYWGhPvroI8XHxys1NTWkcwN+Ci71g5dxmd9jjz1mLvLr2rWr5syZY14CCLjVu+++q1/84hcnjRtvlBcvXhySOQGBQPgDAOAynPMHAMBlCH8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/AABchvAHAMBlCH8AAFyG8AcAwGUIfwAAXIbwBwDAZQh/AADkLv8HeQeq6GDOib4AAAAASUVORK5CYII=",
|
529 |
"text/plain": [
|
530 |
"<Figure size 640x480 with 2 Axes>"
|
531 |
]
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|