Commit
·
5b3cd15
1
Parent(s):
322abb6
update app.py
Browse files
app.py
CHANGED
@@ -3,83 +3,108 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
from sklearn.cluster import KMeans
|
7 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
|
|
8 |
from sklearn.metrics import silhouette_score
|
9 |
|
10 |
# Load dataset
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
le = LabelEncoder()
|
16 |
-
df['Genre'] = le.fit_transform(df['Genre'])
|
17 |
|
18 |
-
#
|
|
|
|
|
19 |
scaler = StandardScaler()
|
20 |
df_scaled = scaler.fit_transform(df)
|
21 |
|
22 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
k_optimal = 5
|
24 |
-
kmeans = KMeans(n_clusters=k_optimal, init='k-means++', random_state=
|
25 |
kmeans.fit(df_scaled)
|
26 |
df['Cluster'] = kmeans.labels_
|
27 |
|
28 |
sil_score = silhouette_score(df_scaled, kmeans.labels_)
|
29 |
|
30 |
# Streamlit App
|
31 |
-
st.title("
|
32 |
-
st.caption("Dataset:
|
33 |
|
34 |
-
tab1, tab2, tab3 = st.tabs(["Model Performance", "Dataset", "Customer Predictor"])
|
35 |
|
36 |
with tab1:
|
37 |
st.header("Model Performance")
|
38 |
st.write(f"**Silhouette Score:** {sil_score:.4f}")
|
39 |
|
40 |
-
wcss = []
|
41 |
-
k_values = range(1, 11)
|
42 |
-
for k in k_values:
|
43 |
-
kmeans_temp = KMeans(n_clusters=k, init='k-means++', random_state=42)
|
44 |
-
kmeans_temp.fit(df_scaled)
|
45 |
-
wcss.append(kmeans_temp.inertia_)
|
46 |
-
|
47 |
fig, ax = plt.subplots()
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
st.pyplot(fig)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with tab2:
|
55 |
st.header("Dataset")
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
ax.set_title("Correlation Matrix")
|
61 |
-
st.pyplot(fig)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
with tab3:
|
64 |
-
st.header("Customer Segment
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
input_data =
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
st.subheader("Predicted Customer Segment")
|
76 |
-
st.markdown(f"<h1 style='color:
|
77 |
|
|
|
78 |
fig, ax = plt.subplots()
|
79 |
sns.scatterplot(x=df['Annual Income (k$)'], y=df['Spending Score (1-100)'], hue=df['Cluster'], palette='viridis', alpha=0.6)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
84 |
st.pyplot(fig)
|
|
|
85 |
st.divider()
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
|
|
6 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
7 |
+
from sklearn.cluster import KMeans
|
8 |
from sklearn.metrics import silhouette_score
|
9 |
|
10 |
# Load dataset
|
11 |
+
@st.cache_data()
|
12 |
+
def load_data():
|
13 |
+
df = pd.read_csv("datasets/Mall_Customers.csv")
|
14 |
+
return df
|
15 |
|
16 |
+
df = load_data()
|
|
|
|
|
17 |
|
18 |
+
df.drop(columns=["CustomerID"], inplace=True) # Drop non-essential column
|
19 |
+
le = LabelEncoder()
|
20 |
+
df["Genre"] = le.fit_transform(df["Genre"]) # Encode Gender (Male=0, Female=1)
|
21 |
scaler = StandardScaler()
|
22 |
df_scaled = scaler.fit_transform(df)
|
23 |
|
24 |
+
# Find optimal K
|
25 |
+
wcss = []
|
26 |
+
k_values = range(1, 11)
|
27 |
+
for k in k_values:
|
28 |
+
kmeans = KMeans(n_clusters=k, init='k-means++', random_state=1, n_init=10)
|
29 |
+
kmeans.fit(df_scaled)
|
30 |
+
wcss.append(kmeans.inertia_)
|
31 |
+
|
32 |
+
# Choose optimal K (assumed 5 based on elbow curve)
|
33 |
k_optimal = 5
|
34 |
+
kmeans = KMeans(n_clusters=k_optimal, init='k-means++', random_state=1, n_init=10)
|
35 |
kmeans.fit(df_scaled)
|
36 |
df['Cluster'] = kmeans.labels_
|
37 |
|
38 |
sil_score = silhouette_score(df_scaled, kmeans.labels_)
|
39 |
|
40 |
# Streamlit App
|
41 |
+
st.title("Clustering: Mall Customers Segmentation")
|
42 |
+
st.caption("Dataset: Mall_Customers.csv")
|
43 |
|
44 |
+
tab1, tab2, tab3 = st.tabs(["Model Performance", "Dataset", "Customer Segment Predictor"])
|
45 |
|
46 |
with tab1:
|
47 |
st.header("Model Performance")
|
48 |
st.write(f"**Silhouette Score:** {sil_score:.4f}")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
fig, ax = plt.subplots()
|
51 |
+
plt.plot(k_values, wcss, marker='o', linestyle='--')
|
52 |
+
plt.xlabel('Number of Clusters (K)')
|
53 |
+
plt.ylabel('WCSS (Within-Cluster Sum of Squares)')
|
54 |
+
plt.title('Elbow Method for Optimal K')
|
55 |
st.pyplot(fig)
|
56 |
|
57 |
+
st.subheader("Customer Segments Visualization")
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
sns.scatterplot(x=df['Annual Income (k$)'], y=df['Spending Score (1-100)'], hue=df['Cluster'], palette='viridis')
|
60 |
+
plt.xlabel('Annual Income (k$)')
|
61 |
+
plt.ylabel('Spending Score')
|
62 |
+
plt.title('Customer Segments')
|
63 |
+
st.pyplot(fig)
|
64 |
+
st.divider()
|
65 |
+
|
66 |
with tab2:
|
67 |
st.header("Dataset")
|
68 |
+
def corr_matrix(data, title):
|
69 |
+
data = data.select_dtypes(include=["number"])
|
70 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
71 |
+
sns.heatmap(data.corr(), annot=True, fmt=".2f", cmap="coolwarm", linewidths=0.5, ax=ax)
|
72 |
+
ax.set_title(title)
|
73 |
+
st.pyplot(fig)
|
74 |
|
75 |
+
corr_matrix(df, "Correlation Matrix")
|
76 |
+
view_type = st.radio("Order:", ["Top -> Bottom", "Bottom -> Top"])
|
|
|
|
|
77 |
|
78 |
+
if view_type == "Top -> Bottom":
|
79 |
+
st.dataframe(df.head(len(df)))
|
80 |
+
else:
|
81 |
+
st.dataframe(df.tail(len(df)).iloc[::-1])
|
82 |
+
st.divider()
|
83 |
+
|
84 |
with tab3:
|
85 |
+
st.header("Customer Segment Predictor")
|
86 |
|
87 |
+
income = st.slider("Annual Income (k$)", int(df['Annual Income (k$)'].min()), int(df['Annual Income (k$)'].max()), int(df['Annual Income (k$)'].median()))
|
88 |
+
spending = st.slider("Spending Score (1-100)", int(df['Spending Score (1-100)'].min()), int(df['Spending Score (1-100)'].max()), int(df['Spending Score (1-100)'].median()))
|
89 |
+
age = st.slider("Age", int(df['Age'].min()), int(df['Age'].max()), int(df['Age'].median()))
|
90 |
+
gender = st.radio("Gender", ["Male", "Female"])
|
91 |
|
92 |
+
input_data = pd.DataFrame([[gender, age, income, spending]], columns=["Genre", "Age", "Annual Income (k$)", "Spending Score (1-100)"])
|
93 |
+
input_data["Genre"] = le.transform([gender])[0] # Encode gender
|
94 |
+
input_scaled = scaler.transform(input_data)
|
95 |
+
predicted_cluster = kmeans.predict(input_scaled)[0]
|
96 |
|
97 |
st.subheader("Predicted Customer Segment")
|
98 |
+
st.markdown(f"<h1 style='color:green;'>Cluster {predicted_cluster}</h1>", unsafe_allow_html=True)
|
99 |
|
100 |
+
# Graph to visualize input placement
|
101 |
fig, ax = plt.subplots()
|
102 |
sns.scatterplot(x=df['Annual Income (k$)'], y=df['Spending Score (1-100)'], hue=df['Cluster'], palette='viridis', alpha=0.6)
|
103 |
+
plt.scatter(income, spending, color='red', label='Your Input', edgecolors='black', s=100)
|
104 |
+
plt.xlabel('Annual Income (k$)')
|
105 |
+
plt.ylabel('Spending Score')
|
106 |
+
plt.title('Customer Segments with Your Input')
|
107 |
+
plt.legend()
|
108 |
st.pyplot(fig)
|
109 |
+
|
110 |
st.divider()
|