Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import (SegformerFeatureExtractor, | |
SegformerForSemanticSegmentation) | |
from PIL import Image | |
MODEL_PATH="./best_model_test/" | |
device = torch.device("cpu") | |
preprocessor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512") | |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH) | |
model.eval() | |
def query_image(img): | |
"""Función para generar predicciones a la escala origina""" | |
inputs = preprocessor(images=img, return_tensors="pt") | |
with torch.no_grad(): | |
preds = model(inputs.unsqueeze(0).to(device))["logits"] | |
#preds = model(image.unsqueeze(0).to(device))["logits"] | |
preds_upscale = upscale_logits_modified(preds, image.shape[2]) | |
predict_label = torch.argmax(preds_upscale, dim=1).to(device) | |
return predict_label[0,:,:].detach().cpu().numpy() | |
def visualize_instance_seg_mask(mask): | |
return mask | |
demo = gr.Interface( | |
query_image, | |
inputs=[gr.Image()], | |
outputs="image", | |
title="SegFormer Model for rock glacier image segmentation" | |
) | |
demo.launch() | |