Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,16 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
from numpy.random import default_rng
|
5 |
import io # For BytesIO to handle file in memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# 1. Data Generation Function (customizable via UI filters)
|
8 |
def generate_custom_model_points(
|
@@ -54,7 +64,6 @@ def generate_custom_model_points(
|
|
54 |
# And ensure it's at least 1
|
55 |
duration_mth_col = np.maximum(1, duration_mth_col)
|
56 |
|
57 |
-
|
58 |
# Policy Count
|
59 |
if policy_count_fixed_val:
|
60 |
policy_count_col_val = np.ones(mp_count_val, dtype=int)
|
@@ -76,12 +85,208 @@ def generate_custom_model_points(
|
|
76 |
|
77 |
return model_point_df
|
78 |
|
79 |
-
# 2.
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
gr.Markdown(
|
83 |
"Configure the parameters below to generate a custom set of seriatim model points. "
|
84 |
-
"The generated table can be viewed and downloaded as an Excel file."
|
85 |
)
|
86 |
|
87 |
df_state = gr.State() # To hold the generated DataFrame
|
@@ -126,36 +331,98 @@ with gr.Blocks() as demo:
|
|
126 |
value=True, label="Fixed Policy Count = 1 (Uncheck for variable count 1-100)"
|
127 |
)
|
128 |
|
129 |
-
generate_btn = gr.Button("Generate Model Points", variant="primary")
|
130 |
|
131 |
with gr.Column(scale=2):
|
132 |
model_points_display = gr.Dataframe(label="Generated Model Points")
|
133 |
download_excel_btn = gr.DownloadButton(
|
134 |
-
label="Download Excel",
|
135 |
-
value="model_points.xlsx",
|
136 |
variant="secondary"
|
137 |
)
|
138 |
|
139 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
def handle_generate_button_click(
|
141 |
mp_c, s, age_m, age_mx, sa_m, sa_mx, p_terms, incl_sex, pc_fixed
|
142 |
):
|
143 |
if int(age_m) >= int(age_mx):
|
144 |
gr.Warning("Minimum Age must be less than Maximum Age.")
|
145 |
-
return df_state.value
|
146 |
if float(sa_m) >= float(sa_mx):
|
147 |
gr.Warning("Minimum Sum Assured must be less than Maximum Sum Assured.")
|
148 |
-
return df_state.value
|
|
|
149 |
if not p_terms:
|
150 |
gr.Warning("No Policy Terms selected. Using defaults: [10, 15, 20].")
|
151 |
-
# Generation function will handle default if p_terms is empty list
|
152 |
|
153 |
-
gr.Info("Generating model points... Please wait.")
|
|
|
|
|
154 |
df = generate_custom_model_points(
|
155 |
mp_c, s, age_m, age_mx, sa_m, sa_mx, p_terms, incl_sex, pc_fixed
|
156 |
)
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
def handle_download_button_click(current_df_to_download):
|
161 |
if current_df_to_download is None or current_df_to_download.empty:
|
@@ -177,10 +444,16 @@ with gr.Blocks() as demo:
|
|
177 |
include_sex_input, policy_count_fixed_input
|
178 |
]
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
generate_btn.click(
|
181 |
fn=handle_generate_button_click,
|
182 |
inputs=inputs_list,
|
183 |
-
outputs=
|
184 |
)
|
185 |
|
186 |
download_excel_btn.click(
|
@@ -189,6 +462,5 @@ with gr.Blocks() as demo:
|
|
189 |
outputs=[download_excel_btn]
|
190 |
)
|
191 |
|
192 |
-
|
193 |
if __name__ == "__main__":
|
194 |
demo.launch()
|
|
|
3 |
import numpy as np
|
4 |
from numpy.random import default_rng
|
5 |
import io # For BytesIO to handle file in memory
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
from scipy import stats
|
9 |
+
import plotly.express as px
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from plotly.subplots import make_subplots
|
12 |
+
|
13 |
+
# Set style for matplotlib
|
14 |
+
plt.style.use('default')
|
15 |
+
sns.set_palette("husl")
|
16 |
|
17 |
# 1. Data Generation Function (customizable via UI filters)
|
18 |
def generate_custom_model_points(
|
|
|
64 |
# And ensure it's at least 1
|
65 |
duration_mth_col = np.maximum(1, duration_mth_col)
|
66 |
|
|
|
67 |
# Policy Count
|
68 |
if policy_count_fixed_val:
|
69 |
policy_count_col_val = np.ones(mp_count_val, dtype=int)
|
|
|
85 |
|
86 |
return model_point_df
|
87 |
|
88 |
+
# 2. Analytics Functions
|
89 |
+
def generate_summary_statistics(df):
|
90 |
+
"""Generate comprehensive summary statistics."""
|
91 |
+
if df is None or df.empty:
|
92 |
+
return pd.DataFrame()
|
93 |
+
|
94 |
+
# Numerical columns summary
|
95 |
+
numerical_cols = ['age_at_entry', 'policy_term', 'policy_count', 'sum_assured', 'duration_mth']
|
96 |
+
summary_stats = df[numerical_cols].describe().round(2)
|
97 |
+
|
98 |
+
# Add additional statistics
|
99 |
+
additional_stats = pd.DataFrame({
|
100 |
+
'age_at_entry': [df['age_at_entry'].mode()[0], df['age_at_entry'].var()],
|
101 |
+
'policy_term': [df['policy_term'].mode()[0], df['policy_term'].var()],
|
102 |
+
'policy_count': [df['policy_count'].mode()[0], df['policy_count'].var()],
|
103 |
+
'sum_assured': [df['sum_assured'].mode()[0], df['sum_assured'].var()],
|
104 |
+
'duration_mth': [df['duration_mth'].mode()[0], df['duration_mth'].var()]
|
105 |
+
}, index=['mode', 'variance']).round(2)
|
106 |
+
|
107 |
+
summary_stats = pd.concat([summary_stats, additional_stats])
|
108 |
+
return summary_stats
|
109 |
+
|
110 |
+
def create_distribution_plots(df):
|
111 |
+
"""Create distribution plots with normal curve overlay."""
|
112 |
+
if df is None or df.empty:
|
113 |
+
return None, None, None
|
114 |
+
|
115 |
+
# Age distribution with normal curve
|
116 |
+
fig_age = plt.figure(figsize=(10, 6))
|
117 |
+
|
118 |
+
# Histogram
|
119 |
+
plt.hist(df['age_at_entry'], bins=20, density=True, alpha=0.7, color='skyblue', edgecolor='black')
|
120 |
+
|
121 |
+
# Normal curve overlay
|
122 |
+
age_mean = df['age_at_entry'].mean()
|
123 |
+
age_std = df['age_at_entry'].std()
|
124 |
+
x_age = np.linspace(df['age_at_entry'].min(), df['age_at_entry'].max(), 100)
|
125 |
+
y_age = stats.norm.pdf(x_age, age_mean, age_std)
|
126 |
+
plt.plot(x_age, y_age, 'r-', linewidth=2, label=f'Normal Curve (ΞΌ={age_mean:.1f}, Ο={age_std:.1f})')
|
127 |
+
|
128 |
+
plt.title('Age at Entry Distribution with Normal Curve Overlay', fontsize=14, fontweight='bold')
|
129 |
+
plt.xlabel('Age at Entry')
|
130 |
+
plt.ylabel('Density')
|
131 |
+
plt.legend()
|
132 |
+
plt.grid(True, alpha=0.3)
|
133 |
+
plt.tight_layout()
|
134 |
+
|
135 |
+
# Sum Assured distribution with normal curve
|
136 |
+
fig_sa = plt.figure(figsize=(10, 6))
|
137 |
+
|
138 |
+
# Histogram
|
139 |
+
plt.hist(df['sum_assured'], bins=30, density=True, alpha=0.7, color='lightgreen', edgecolor='black')
|
140 |
+
|
141 |
+
# Normal curve overlay
|
142 |
+
sa_mean = df['sum_assured'].mean()
|
143 |
+
sa_std = df['sum_assured'].std()
|
144 |
+
x_sa = np.linspace(df['sum_assured'].min(), df['sum_assured'].max(), 100)
|
145 |
+
y_sa = stats.norm.pdf(x_sa, sa_mean, sa_std)
|
146 |
+
plt.plot(x_sa, y_sa, 'r-', linewidth=2, label=f'Normal Curve (ΞΌ=${sa_mean:,.0f}, Ο=${sa_std:,.0f})')
|
147 |
+
|
148 |
+
plt.title('Sum Assured Distribution with Normal Curve Overlay', fontsize=14, fontweight='bold')
|
149 |
+
plt.xlabel('Sum Assured ($)')
|
150 |
+
plt.ylabel('Density')
|
151 |
+
plt.legend()
|
152 |
+
plt.grid(True, alpha=0.3)
|
153 |
+
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f'${x:,.0f}'))
|
154 |
+
plt.tight_layout()
|
155 |
+
|
156 |
+
# Duration distribution
|
157 |
+
fig_duration = plt.figure(figsize=(10, 6))
|
158 |
+
|
159 |
+
# Histogram
|
160 |
+
plt.hist(df['duration_mth'], bins=25, density=True, alpha=0.7, color='lightcoral', edgecolor='black')
|
161 |
+
|
162 |
+
# Normal curve overlay
|
163 |
+
dur_mean = df['duration_mth'].mean()
|
164 |
+
dur_std = df['duration_mth'].std()
|
165 |
+
x_dur = np.linspace(df['duration_mth'].min(), df['duration_mth'].max(), 100)
|
166 |
+
y_dur = stats.norm.pdf(x_dur, dur_mean, dur_std)
|
167 |
+
plt.plot(x_dur, y_dur, 'r-', linewidth=2, label=f'Normal Curve (ΞΌ={dur_mean:.1f}, Ο={dur_std:.1f})')
|
168 |
+
|
169 |
+
plt.title('Policy Duration (Months) Distribution with Normal Curve Overlay', fontsize=14, fontweight='bold')
|
170 |
+
plt.xlabel('Duration (Months)')
|
171 |
+
plt.ylabel('Density')
|
172 |
+
plt.legend()
|
173 |
+
plt.grid(True, alpha=0.3)
|
174 |
+
plt.tight_layout()
|
175 |
+
|
176 |
+
return fig_age, fig_sa, fig_duration
|
177 |
+
|
178 |
+
def create_categorical_analysis(df):
|
179 |
+
"""Create categorical variable analysis."""
|
180 |
+
if df is None or df.empty:
|
181 |
+
return pd.DataFrame(), None
|
182 |
+
|
183 |
+
# Sex distribution
|
184 |
+
sex_dist = df['sex'].value_counts().reset_index()
|
185 |
+
sex_dist.columns = ['Sex', 'Count']
|
186 |
+
sex_dist['Percentage'] = (sex_dist['Count'] / len(df) * 100).round(2)
|
187 |
+
|
188 |
+
# Policy term distribution
|
189 |
+
term_dist = df['policy_term'].value_counts().sort_index().reset_index()
|
190 |
+
term_dist.columns = ['Policy_Term', 'Count']
|
191 |
+
term_dist['Percentage'] = (term_dist['Count'] / len(df) * 100).round(2)
|
192 |
+
|
193 |
+
# Combined categorical summary
|
194 |
+
categorical_summary = pd.DataFrame({
|
195 |
+
'Variable': ['Sex Distribution', '', 'Policy Term Distribution'] + [''] * (len(term_dist) - 1),
|
196 |
+
'Category': [''] + list(sex_dist['Sex']) + [''] + list(term_dist['Policy_Term'].astype(str) + ' years'),
|
197 |
+
'Count': [''] + list(sex_dist['Count']) + [''] + list(term_dist['Count']),
|
198 |
+
'Percentage': [''] + list(sex_dist['Percentage'].astype(str) + '%') + [''] + list(term_dist['Percentage'].astype(str) + '%')
|
199 |
+
})
|
200 |
+
|
201 |
+
# Create bar plot for policy terms
|
202 |
+
fig_terms = plt.figure(figsize=(10, 6))
|
203 |
+
bars = plt.bar(term_dist['Policy_Term'].astype(str), term_dist['Count'], color='gold', edgecolor='black', alpha=0.8)
|
204 |
+
plt.title('Policy Term Distribution', fontsize=14, fontweight='bold')
|
205 |
+
plt.xlabel('Policy Term (Years)')
|
206 |
+
plt.ylabel('Count')
|
207 |
+
plt.grid(True, alpha=0.3, axis='y')
|
208 |
+
|
209 |
+
# Add count labels on bars
|
210 |
+
for bar in bars:
|
211 |
+
height = bar.get_height()
|
212 |
+
plt.text(bar.get_x() + bar.get_width()/2., height,
|
213 |
+
f'{int(height)}', ha='center', va='bottom')
|
214 |
+
|
215 |
+
plt.tight_layout()
|
216 |
+
|
217 |
+
return categorical_summary, fig_terms
|
218 |
+
|
219 |
+
def create_correlation_analysis(df):
|
220 |
+
"""Create correlation analysis."""
|
221 |
+
if df is None or df.empty:
|
222 |
+
return None, pd.DataFrame()
|
223 |
+
|
224 |
+
# Select numerical columns for correlation
|
225 |
+
numerical_cols = ['age_at_entry', 'policy_term', 'policy_count', 'sum_assured', 'duration_mth']
|
226 |
+
corr_matrix = df[numerical_cols].corr()
|
227 |
+
|
228 |
+
# Create correlation heatmap
|
229 |
+
fig_corr = plt.figure(figsize=(10, 8))
|
230 |
+
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
|
231 |
+
sns.heatmap(corr_matrix, mask=mask, annot=True, cmap='RdYlBu_r', center=0,
|
232 |
+
square=True, fmt='.3f', cbar_kws={"shrink": .8})
|
233 |
+
plt.title('Correlation Matrix of Numerical Variables', fontsize=14, fontweight='bold')
|
234 |
+
plt.tight_layout()
|
235 |
+
|
236 |
+
# Create correlation summary table
|
237 |
+
corr_summary = corr_matrix.round(3)
|
238 |
+
|
239 |
+
return fig_corr, corr_summary
|
240 |
+
|
241 |
+
def generate_business_insights(df):
|
242 |
+
"""Generate business insights and key metrics."""
|
243 |
+
if df is None or df.empty:
|
244 |
+
return ""
|
245 |
+
|
246 |
+
total_policies = len(df)
|
247 |
+
total_sum_assured = df['sum_assured'].sum()
|
248 |
+
avg_sum_assured = df['sum_assured'].mean()
|
249 |
+
avg_age = df['age_at_entry'].mean()
|
250 |
+
avg_duration = df['duration_mth'].mean()
|
251 |
+
|
252 |
+
# Most common policy term
|
253 |
+
most_common_term = df['policy_term'].mode()[0]
|
254 |
+
term_percentage = (df['policy_term'] == most_common_term).mean() * 100
|
255 |
+
|
256 |
+
# Age groups
|
257 |
+
young_pct = ((df['age_at_entry'] <= 30).mean() * 100).round(1)
|
258 |
+
middle_pct = (((df['age_at_entry'] > 30) & (df['age_at_entry'] <= 50)).mean() * 100).round(1)
|
259 |
+
mature_pct = ((df['age_at_entry'] > 50).mean() * 100).round(1)
|
260 |
+
|
261 |
+
insights_text = f"""
|
262 |
+
## π Business Insights & Key Metrics
|
263 |
+
|
264 |
+
### Portfolio Overview
|
265 |
+
- **Total Policies Generated**: {total_policies:,}
|
266 |
+
- **Total Sum Assured**: ${total_sum_assured:,.0f}
|
267 |
+
- **Average Sum Assured**: ${avg_sum_assured:,.0f}
|
268 |
+
- **Average Issue Age**: {avg_age:.1f} years
|
269 |
+
- **Average Policy Duration**: {avg_duration:.1f} months ({avg_duration/12:.1f} years)
|
270 |
+
|
271 |
+
### Demographics
|
272 |
+
- **Young Policyholders (β€30)**: {young_pct}%
|
273 |
+
- **Middle-aged (31-50)**: {middle_pct}%
|
274 |
+
- **Mature (>50)**: {mature_pct}%
|
275 |
+
|
276 |
+
### Product Mix
|
277 |
+
- **Most Popular Term**: {most_common_term} years ({term_percentage:.1f}% of policies)
|
278 |
+
- **Policy Duration Range**: {df['duration_mth'].min()} - {df['duration_mth'].max()} months
|
279 |
+
- **Sum Assured Range**: ${df['sum_assured'].min():,.0f} - ${df['sum_assured'].max():,.0f}
|
280 |
+
"""
|
281 |
+
|
282 |
+
return insights_text
|
283 |
+
|
284 |
+
# 3. Gradio App Definition
|
285 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
286 |
+
gr.Markdown("# π― Actuarial Model Points Generator with Analytics")
|
287 |
gr.Markdown(
|
288 |
"Configure the parameters below to generate a custom set of seriatim model points. "
|
289 |
+
"The generated table can be viewed and downloaded as an Excel file, complete with comprehensive analytics and insights."
|
290 |
)
|
291 |
|
292 |
df_state = gr.State() # To hold the generated DataFrame
|
|
|
331 |
value=True, label="Fixed Policy Count = 1 (Uncheck for variable count 1-100)"
|
332 |
)
|
333 |
|
334 |
+
generate_btn = gr.Button("Generate Model Points", variant="primary", size="lg")
|
335 |
|
336 |
with gr.Column(scale=2):
|
337 |
model_points_display = gr.Dataframe(label="Generated Model Points")
|
338 |
download_excel_btn = gr.DownloadButton(
|
339 |
+
label="π₯ Download Excel",
|
340 |
+
value="model_points.xlsx",
|
341 |
variant="secondary"
|
342 |
)
|
343 |
|
344 |
+
# Analytics Section
|
345 |
+
gr.Markdown("---")
|
346 |
+
|
347 |
+
with gr.Row():
|
348 |
+
with gr.Column():
|
349 |
+
business_insights = gr.Markdown("Generate model points to see business insights...")
|
350 |
+
|
351 |
+
with gr.Row():
|
352 |
+
with gr.Column():
|
353 |
+
gr.Markdown("### π Summary Statistics")
|
354 |
+
summary_stats_display = gr.Dataframe(label="Descriptive Statistics")
|
355 |
+
with gr.Column():
|
356 |
+
gr.Markdown("### π·οΈ Categorical Analysis")
|
357 |
+
categorical_display = gr.Dataframe(label="Category Distributions")
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
with gr.Column():
|
361 |
+
gr.Markdown("### π Age Distribution")
|
362 |
+
age_plot = gr.Plot(label="Age Distribution with Normal Curve")
|
363 |
+
with gr.Column():
|
364 |
+
gr.Markdown("### π° Sum Assured Distribution")
|
365 |
+
sa_plot = gr.Plot(label="Sum Assured Distribution with Normal Curve")
|
366 |
+
|
367 |
+
with gr.Row():
|
368 |
+
with gr.Column():
|
369 |
+
gr.Markdown("### β±οΈ Duration Distribution")
|
370 |
+
duration_plot = gr.Plot(label="Duration Distribution with Normal Curve")
|
371 |
+
with gr.Column():
|
372 |
+
gr.Markdown("### π Policy Term Distribution")
|
373 |
+
terms_plot = gr.Plot(label="Policy Terms")
|
374 |
+
|
375 |
+
with gr.Row():
|
376 |
+
with gr.Column():
|
377 |
+
gr.Markdown("### π Correlation Analysis")
|
378 |
+
correlation_plot = gr.Plot(label="Correlation Heatmap")
|
379 |
+
with gr.Column():
|
380 |
+
gr.Markdown("### π Correlation Matrix")
|
381 |
+
correlation_matrix_display = gr.Dataframe(label="Correlation Coefficients")
|
382 |
+
|
383 |
+
# 4. Event Handlers
|
384 |
def handle_generate_button_click(
|
385 |
mp_c, s, age_m, age_mx, sa_m, sa_mx, p_terms, incl_sex, pc_fixed
|
386 |
):
|
387 |
if int(age_m) >= int(age_mx):
|
388 |
gr.Warning("Minimum Age must be less than Maximum Age.")
|
389 |
+
return [df_state.value] * 10 # Return current state for all outputs
|
390 |
if float(sa_m) >= float(sa_mx):
|
391 |
gr.Warning("Minimum Sum Assured must be less than Maximum Sum Assured.")
|
392 |
+
return [df_state.value] * 10
|
393 |
+
|
394 |
if not p_terms:
|
395 |
gr.Warning("No Policy Terms selected. Using defaults: [10, 15, 20].")
|
|
|
396 |
|
397 |
+
gr.Info("Generating model points and analytics... Please wait.")
|
398 |
+
|
399 |
+
# Generate data
|
400 |
df = generate_custom_model_points(
|
401 |
mp_c, s, age_m, age_mx, sa_m, sa_mx, p_terms, incl_sex, pc_fixed
|
402 |
)
|
403 |
+
|
404 |
+
# Generate analytics
|
405 |
+
insights = generate_business_insights(df)
|
406 |
+
summary_stats = generate_summary_statistics(df)
|
407 |
+
categorical_summary, terms_fig = create_categorical_analysis(df)
|
408 |
+
age_fig, sa_fig, duration_fig = create_distribution_plots(df)
|
409 |
+
corr_fig, corr_matrix = create_correlation_analysis(df)
|
410 |
+
|
411 |
+
gr.Info(f"β
{len(df)} model points generated successfully with complete analytics!")
|
412 |
+
|
413 |
+
return (
|
414 |
+
df, # model_points_display
|
415 |
+
df, # df_state
|
416 |
+
insights, # business_insights
|
417 |
+
summary_stats, # summary_stats_display
|
418 |
+
categorical_summary, # categorical_display
|
419 |
+
age_fig, # age_plot
|
420 |
+
sa_fig, # sa_plot
|
421 |
+
duration_fig, # duration_plot
|
422 |
+
terms_fig, # terms_plot
|
423 |
+
corr_fig, # correlation_plot
|
424 |
+
corr_matrix # correlation_matrix_display
|
425 |
+
)
|
426 |
|
427 |
def handle_download_button_click(current_df_to_download):
|
428 |
if current_df_to_download is None or current_df_to_download.empty:
|
|
|
444 |
include_sex_input, policy_count_fixed_input
|
445 |
]
|
446 |
|
447 |
+
outputs_list = [
|
448 |
+
model_points_display, df_state, business_insights, summary_stats_display,
|
449 |
+
categorical_display, age_plot, sa_plot, duration_plot, terms_plot,
|
450 |
+
correlation_plot, correlation_matrix_display
|
451 |
+
]
|
452 |
+
|
453 |
generate_btn.click(
|
454 |
fn=handle_generate_button_click,
|
455 |
inputs=inputs_list,
|
456 |
+
outputs=outputs_list
|
457 |
)
|
458 |
|
459 |
download_excel_btn.click(
|
|
|
462 |
outputs=[download_excel_btn]
|
463 |
)
|
464 |
|
|
|
465 |
if __name__ == "__main__":
|
466 |
demo.launch()
|