alidenewade commited on
Commit
b6acbd8
·
verified ·
1 Parent(s): da6aaca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -14
README.md CHANGED
@@ -22,7 +22,7 @@ tags:
22
 
23
  # 🏗️ Actuarial Model Point Generator
24
 
25
- A flexible Gradio app to generate fully customized **synthetic seriatim model points** for use in actuarial testing, clustering, or analytics.
26
 
27
  [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/alidenewade/actuarial-model-point-generator)
28
 
@@ -30,7 +30,7 @@ A flexible Gradio app to generate fully customized **synthetic seriatim model po
30
 
31
  ## 🌟 What’s New
32
 
33
- This version adds **complete UI control** over generation logic:
34
 
35
  - 👥 Number of policies (100 to 50,000)
36
  - 🎲 Random seed for reproducibility
@@ -39,6 +39,11 @@ This version adds **complete UI control** over generation logic:
39
  - 📆 Multiple selectable policy terms (5–30 years)
40
  - 🧑 Include or exclude sex (M/F)
41
  - 📦 Choose between fixed or variable policy count
 
 
 
 
 
42
 
43
  ---
44
 
@@ -56,29 +61,41 @@ Each generated row represents a policy and includes the following columns:
56
 
57
  ---
58
 
 
 
 
 
 
 
 
 
 
 
59
  ## ✅ How to Use
60
 
61
- 1. Adjust your filters on the left.
62
- 2. Click **“Generate Model Points”**.
63
- 3. Preview the results in the table.
64
- 4. Click **“Download Excel”** to save the data.
 
65
 
66
  ---
67
 
68
  ## 🧠 Use Cases
69
 
70
- - Cluster-based model point selection
71
- - Stress testing & actuarial simulations
72
- - Product mix scenario planning
73
- - Teaching or training actuarial students
74
- - Model validation tools
 
75
 
76
  ---
77
 
78
  ## 📦 File Export
79
 
80
  The download button exports the generated data table to an Excel file (`.xlsx`). The **`policy_id`** is included as the first column, and the DataFrame index is omitted from the file.
81
- Warnings will be shown if inputs are invalid (e.g., min age ≥ max age).
82
 
83
  ---
84
 
@@ -91,10 +108,10 @@ cd actuarial-model-point-generator
91
 
92
  # Install dependencies
93
  pip install -r requirements.txt
 
94
 
95
- # Run the app
96
  python app.py
97
- ```
98
 
99
  ## 🙌 Acknowledgements
100
  Huge thanks to the Lifelib community for their open-source contributions to life actuarial modeling in Python.
 
22
 
23
  # 🏗️ Actuarial Model Point Generator
24
 
25
+ A flexible Gradio app to generate fully customized **synthetic seriatim model points** for use in actuarial testing, clustering, or analytics. This tool now also provides immediate data insights through interactive summaries and visualizations.
26
 
27
  [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/alidenewade/actuarial-model-point-generator)
28
 
 
30
 
31
  ## 🌟 What’s New
32
 
33
+ This version enhances data generation with **complete UI control** and adds **interactive data analysis features**:
34
 
35
  - 👥 Number of policies (100 to 50,000)
36
  - 🎲 Random seed for reproducibility
 
39
  - 📆 Multiple selectable policy terms (5–30 years)
40
  - 🧑 Include or exclude sex (M/F)
41
  - 📦 Choose between fixed or variable policy count
42
+ - 📊 **In-depth Data Insights**:
43
+ - Descriptive statistics for key numerical fields.
44
+ - Distribution plot for 'Sum Assured' with a fitted normal curve.
45
+ - Frequency tables for categorical data like 'Sex' and 'Policy Term'.
46
+ - All summaries presented in an easy-to-use Tabbed interface below the main data table.
47
 
48
  ---
49
 
 
61
 
62
  ---
63
 
64
+ ## 📊 Data Analysis & Insights
65
+
66
+ Beyond data generation, the app now provides immediate analytical feedback on the generated dataset through dedicated tabs:
67
+
68
+ - **Numerical Summary Tab**: Get a quick overview of the numerical columns (`age_at_entry`, `sum_assured`, `duration_mth`, `policy_count`) with key descriptive statistics like mean, standard deviation, min/max values, and quartiles.
69
+ - **Distribution Plot Tab**: Visualize the distribution of the `sum_assured` column. A histogram shows the actual generated data's distribution (which is uniform based on inputs), and a normal bell curve is fitted and overlaid for illustrative comparison, helping to understand the data's spread and central tendency.
70
+ - **Categorical Summary Tab**: Understand the composition of your synthetic portfolio with frequency counts and percentages for `sex` and `policy_term` distributions.
71
+
72
+ ---
73
+
74
  ## ✅ How to Use
75
 
76
+ 1. Adjust your generation parameters using the filters on the left panel.
77
+ 2. Click the **“Generate Model Points”** button.
78
+ 3. Preview the generated data in the main table.
79
+ 4. Explore the interactive summaries (descriptive statistics, distribution plots, categorical breakdowns) in the tabs located below the main data table.
80
+ 5. Click the **“Download Excel”** button to save the generated data table.
81
 
82
  ---
83
 
84
  ## 🧠 Use Cases
85
 
86
+ - Cluster-based model point selection and analysis.
87
+ - Stress testing actuarial models and validating assumptions.
88
+ - Developing and testing new insurance products or features.
89
+ - Scenario planning for different product mixes or demographic profiles.
90
+ - Educational tool for teaching actuarial concepts and data analysis.
91
+ - Rapidly creating datasets for model validation or machine learning tasks in an insurance context.
92
 
93
  ---
94
 
95
  ## 📦 File Export
96
 
97
  The download button exports the generated data table to an Excel file (`.xlsx`). The **`policy_id`** is included as the first column, and the DataFrame index is omitted from the file.
98
+ Warnings will be shown if input parameters are invalid (e.g., minimum age ≥ maximum age).
99
 
100
  ---
101
 
 
108
 
109
  # Install dependencies
110
  pip install -r requirements.txt
111
+ ```
112
 
113
+ ## Run the app
114
  python app.py
 
115
 
116
  ## 🙌 Acknowledgements
117
  Huge thanks to the Lifelib community for their open-source contributions to life actuarial modeling in Python.