Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import gradio as gr | |
| from ultralytics import YOLO | |
| from PIL import Image | |
| from ultralytics import YOLO | |
| from PIL import Image | |
| from ultralytics.utils.plotting import Annotator,colors | |
| model = YOLO('Dental_model.pt') # Replace 'yolov8n.pt' with your model file if using a custom one | |
| names=model.model.names | |
| def detect_objects(image): | |
| image1=image.copy() | |
| results = model.predict(image) | |
| whole=results[0].plot() | |
| classes=results[0].boxes.cls.cpu().tolist() | |
| boxes=results[0].boxes.xyxy.cpu() | |
| annotator = Annotator(image, line_width=3) | |
| annotator1=Annotator(image1, line_width=3) | |
| for box,cls in zip(boxes,classes): | |
| annotator.box_label(box, label=names[int(cls)], color=colors(int(cls))) | |
| annotator1.box_label(box, label=None, color=colors(int(cls))) | |
| return Image.fromarray(annotator.result()),Image.fromarray(annotator1.result()) | |
| # Gradio Interface | |
| title = "YOLOv8 Object Detection" | |
| description = "Upload an image to detect objects using a YOLOv8 model." | |
| gradio_app =gr.Interface(fn=detect_objects, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Image(type='pil', label="Dental Analysis"), | |
| gr.Image(type='pil', label="Dental Analysis")]) | |
| if __name__=="__main__": | |
| gradio_app.launch(server_name="0.0.0.0", server_port=7861, share=True, show_error=False) | 
