Upload 2 files
Browse files- app.py +239 -0
- requirements.txt +14 -0
app.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import asyncio
|
| 3 |
+
import os
|
| 4 |
+
import traceback
|
| 5 |
+
import numpy as np
|
| 6 |
+
import re
|
| 7 |
+
from functools import partial
|
| 8 |
+
import torch
|
| 9 |
+
import imageio
|
| 10 |
+
import cv2
|
| 11 |
+
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
from safetensors.torch import load_file
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import edge_tts
|
| 16 |
+
from transformers import AutoTokenizer, pipeline
|
| 17 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
| 18 |
+
from func_timeout import func_timeout, FunctionTimedOut
|
| 19 |
+
|
| 20 |
+
# Initialize models with cache optimization
|
| 21 |
+
def initialize_components():
|
| 22 |
+
global tokenizer, text_pipe, sentiment_analyzer, pipe
|
| 23 |
+
|
| 24 |
+
# Text generation components
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-1.5B-Instruct", cache_dir="model_cache")
|
| 26 |
+
text_pipe = pipeline(
|
| 27 |
+
"text-generation",
|
| 28 |
+
model="Qwen/Qwen2.5-1.5B-Instruct",
|
| 29 |
+
tokenizer=tokenizer,
|
| 30 |
+
device_map="auto",
|
| 31 |
+
cache_dir="model_cache"
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Sentiment analysis
|
| 35 |
+
sentiment_analyzer = pipeline("sentiment-analysis", cache_dir="model_cache")
|
| 36 |
+
|
| 37 |
+
# Video generation setup
|
| 38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 39 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
| 40 |
+
step = 8
|
| 41 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
| 42 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
| 43 |
+
base = "emilianJR/epiCRealism"
|
| 44 |
+
|
| 45 |
+
# Load motion adapter with caching
|
| 46 |
+
adapter = MotionAdapter().to(device, dtype)
|
| 47 |
+
model_path = hf_hub_download(repo, ckpt, cache_dir="model_cache")
|
| 48 |
+
adapter.load_state_dict(load_file(model_path, device=device))
|
| 49 |
+
|
| 50 |
+
# Initialize pipeline
|
| 51 |
+
pipe = AnimateDiffPipeline.from_pretrained(
|
| 52 |
+
base,
|
| 53 |
+
motion_adapter=adapter,
|
| 54 |
+
torch_dtype=dtype,
|
| 55 |
+
cache_dir="model_cache"
|
| 56 |
+
).to(device)
|
| 57 |
+
|
| 58 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
| 59 |
+
pipe.scheduler.config,
|
| 60 |
+
timestep_spacing="trailing",
|
| 61 |
+
beta_schedule="linear"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
initialize_components()
|
| 65 |
+
|
| 66 |
+
# Cleanup function for resource management
|
| 67 |
+
def cleanup():
|
| 68 |
+
torch.cuda.empty_cache()
|
| 69 |
+
for f in ["generated_video.mp4", "final_video_with_audio.mp4", "output.mp3"]:
|
| 70 |
+
if os.path.exists(f):
|
| 71 |
+
try:
|
| 72 |
+
os.remove(f)
|
| 73 |
+
except:
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
# Story generation functions (keep your original functions but add timeout)
|
| 77 |
+
def generate_video(summary):
|
| 78 |
+
def crossfade_transition(frames1, frames2, transition_length=10):
|
| 79 |
+
blended_frames = []
|
| 80 |
+
frames1_np = [np.array(frame) for frame in frames1[-transition_length:]]
|
| 81 |
+
frames2_np = [np.array(frame) for frame in frames2[:transition_length]]
|
| 82 |
+
for i in range(transition_length):
|
| 83 |
+
alpha = i / transition_length
|
| 84 |
+
beta = 1.0 - alpha
|
| 85 |
+
blended = cv2.addWeighted(frames1_np[i], beta, frames2_np[i], alpha, 0)
|
| 86 |
+
blended_frames.append(Image.fromarray(blended))
|
| 87 |
+
return blended_frames
|
| 88 |
+
|
| 89 |
+
sentences = []
|
| 90 |
+
current_sentence = ""
|
| 91 |
+
for char in summary:
|
| 92 |
+
current_sentence += char
|
| 93 |
+
if char in {'.', '!', '?'}:
|
| 94 |
+
sentences.append(current_sentence.strip())
|
| 95 |
+
current_sentence = ""
|
| 96 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
| 97 |
+
|
| 98 |
+
output_dir = "generated_frames"
|
| 99 |
+
video_path = "generated_video.mp4"
|
| 100 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 101 |
+
|
| 102 |
+
all_frames = []
|
| 103 |
+
previous_frames = None
|
| 104 |
+
transition_frames = 10
|
| 105 |
+
batch_size = 1
|
| 106 |
+
|
| 107 |
+
for i in range(0, len(sentences), batch_size):
|
| 108 |
+
batch_prompts = sentences[i : i + batch_size]
|
| 109 |
+
for idx, prompt in enumerate(batch_prompts):
|
| 110 |
+
try:
|
| 111 |
+
output = func_timeout(
|
| 112 |
+
300, # 5 minute timeout per scene
|
| 113 |
+
pipe,
|
| 114 |
+
args=(prompt,),
|
| 115 |
+
kwargs={
|
| 116 |
+
'guidance_scale': 1.0,
|
| 117 |
+
'num_inference_steps': step,
|
| 118 |
+
'width': 128, # Reduced resolution
|
| 119 |
+
'height': 128
|
| 120 |
+
}
|
| 121 |
+
)
|
| 122 |
+
frames = output.frames[0]
|
| 123 |
+
|
| 124 |
+
if previous_frames is not None:
|
| 125 |
+
transition = crossfade_transition(previous_frames, frames, transition_frames)
|
| 126 |
+
all_frames.extend(transition)
|
| 127 |
+
|
| 128 |
+
all_frames.extend(frames)
|
| 129 |
+
previous_frames = frames
|
| 130 |
+
|
| 131 |
+
except FunctionTimedOut:
|
| 132 |
+
print(f"Timeout generating scene {i+idx+1}")
|
| 133 |
+
return None
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error generating scene: {str(e)}")
|
| 136 |
+
continue
|
| 137 |
+
|
| 138 |
+
imageio.mimsave(video_path, all_frames, fps=6) # Reduced FPS
|
| 139 |
+
return video_path
|
| 140 |
+
|
| 141 |
+
# Modified main processing function with enhanced error handling
|
| 142 |
+
def create_story_video(prompt, progress=gr.Progress()):
|
| 143 |
+
cleanup() # Clear previous runs
|
| 144 |
+
|
| 145 |
+
if not prompt or len(prompt.strip()) < 5:
|
| 146 |
+
return "Prompt too short (min 5 characters)", None, None
|
| 147 |
+
if len(prompt) > 500:
|
| 148 |
+
return "Prompt too long (max 500 characters)", None, None
|
| 149 |
+
|
| 150 |
+
try:
|
| 151 |
+
progress(0, desc="Starting story generation...")
|
| 152 |
+
story = generate_story(prompt)
|
| 153 |
+
progress(25, desc="Story generated")
|
| 154 |
+
|
| 155 |
+
progress(30, desc="Starting video generation...")
|
| 156 |
+
video_path = generate_video(story)
|
| 157 |
+
if not video_path:
|
| 158 |
+
return story, None, "Video generation failed"
|
| 159 |
+
progress(60, desc="Video rendered")
|
| 160 |
+
|
| 161 |
+
progress(65, desc="Creating audio summary...")
|
| 162 |
+
audio_summary = summary_of_summary(story, video_path)
|
| 163 |
+
|
| 164 |
+
progress(75, desc="Generating voiceover...")
|
| 165 |
+
try:
|
| 166 |
+
loop = asyncio.new_event_loop()
|
| 167 |
+
asyncio.set_event_loop(loop)
|
| 168 |
+
audio_file = loop.run_until_complete(
|
| 169 |
+
generate_audio_with_sentiment(audio_summary, sentiment_analyzer)
|
| 170 |
+
)
|
| 171 |
+
except Exception as e:
|
| 172 |
+
return story, None, f"Audio error: {str(e)}"
|
| 173 |
+
|
| 174 |
+
progress(90, desc="Finalizing video...")
|
| 175 |
+
output_path = 'final_video_with_audio.mp4'
|
| 176 |
+
combine_video_with_audio(video_path, audio_file, output_path)
|
| 177 |
+
|
| 178 |
+
return story, output_path, audio_summary
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
error_msg = f"Error: {str(e)}"
|
| 182 |
+
print(traceback.format_exc())
|
| 183 |
+
return error_msg, None, None
|
| 184 |
+
|
| 185 |
+
# Keep other functions (summarize, generate_story, etc.) unchanged from your original code
|
| 186 |
+
# ...
|
| 187 |
+
|
| 188 |
+
# Gradio interface setup with resource management
|
| 189 |
+
EXAMPLE_PROMPTS = [
|
| 190 |
+
"A nurse discovers an unusual pattern in patient symptoms.",
|
| 191 |
+
"A family finds a time capsule during home renovation.",
|
| 192 |
+
"A restaurant owner innovates to save their business.",
|
| 193 |
+
"Wildlife tracking reveals climate changes.",
|
| 194 |
+
"Community rebuilds after natural disaster."
|
| 195 |
+
]
|
| 196 |
+
|
| 197 |
+
with gr.Blocks(title="AI Story Generator", theme=gr.themes.Soft()) as demo:
|
| 198 |
+
gr.Markdown("# 🎬 AI Story Video Generator")
|
| 199 |
+
gr.Markdown("Enter a short story idea (5-500 characters)")
|
| 200 |
+
|
| 201 |
+
with gr.Row():
|
| 202 |
+
prompt_input = gr.Textbox(
|
| 203 |
+
label="Story Idea",
|
| 204 |
+
placeholder="Example: A detective finds a hidden room...",
|
| 205 |
+
max_lines=2
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
gr.Examples(
|
| 209 |
+
examples=EXAMPLE_PROMPTS,
|
| 210 |
+
inputs=prompt_input,
|
| 211 |
+
label="Example Prompts"
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 216 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
| 217 |
+
|
| 218 |
+
with gr.Tabs():
|
| 219 |
+
with gr.Tab("Results"):
|
| 220 |
+
video_output = gr.Video(label="Generated Video", interactive=False)
|
| 221 |
+
story_output = gr.Textbox(label="Full Story", lines=10)
|
| 222 |
+
audio_summary = gr.Textbox(label="Audio Summary", lines=3)
|
| 223 |
+
|
| 224 |
+
generate_btn.click(
|
| 225 |
+
fn=create_story_video,
|
| 226 |
+
inputs=prompt_input,
|
| 227 |
+
outputs=[story_output, video_output, audio_summary]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
clear_btn.click(
|
| 231 |
+
fn=lambda: [None, None, None],
|
| 232 |
+
outputs=[story_output, video_output, audio_summary]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
demo.load(fn=cleanup)
|
| 236 |
+
demo.unload(fn=cleanup)
|
| 237 |
+
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
demo.launch(server_port=7860, show_error=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.25.0
|
| 2 |
+
edge-tts==6.1.3
|
| 3 |
+
torch==2.3.0
|
| 4 |
+
torchvision==0.18.0
|
| 5 |
+
diffusers==0.28.2
|
| 6 |
+
transformers==4.41.0
|
| 7 |
+
imageio==2.34.0
|
| 8 |
+
opencv-python==4.9.0.80
|
| 9 |
+
moviepy==1.0.3
|
| 10 |
+
safetensors==0.4.2
|
| 11 |
+
huggingface-hub==0.23.0
|
| 12 |
+
numpy==1.26.4
|
| 13 |
+
Pillow==10.3.0
|
| 14 |
+
accelerate==0.30.0
|