|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | from typing import List, Dict, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from .head_act import activate_head | 
					
						
						|  | from .utils import create_uv_grid, position_grid_to_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DPTHead(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | DPT  Head for dense prediction tasks. | 
					
						
						|  |  | 
					
						
						|  | This implementation follows the architecture described in "Vision Transformers for Dense Prediction" | 
					
						
						|  | (https://arxiv.org/abs/2103.13413). The DPT head processes features from a vision transformer | 
					
						
						|  | backbone and produces dense predictions by fusing multi-scale features. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | dim_in (int): Input dimension (channels). | 
					
						
						|  | patch_size (int, optional): Patch size. Default is 14. | 
					
						
						|  | output_dim (int, optional): Number of output channels. Default is 4. | 
					
						
						|  | activation (str, optional): Activation type. Default is "inv_log". | 
					
						
						|  | conf_activation (str, optional): Confidence activation type. Default is "expp1". | 
					
						
						|  | features (int, optional): Feature channels for intermediate representations. Default is 256. | 
					
						
						|  | out_channels (List[int], optional): Output channels for each intermediate layer. | 
					
						
						|  | intermediate_layer_idx (List[int], optional): Indices of layers from aggregated tokens used for DPT. | 
					
						
						|  | pos_embed (bool, optional): Whether to use positional embedding. Default is True. | 
					
						
						|  | feature_only (bool, optional): If True, return features only without the last several layers and activation head. Default is False. | 
					
						
						|  | down_ratio (int, optional): Downscaling factor for the output resolution. Default is 1. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim_in: int, | 
					
						
						|  | patch_size: int = 14, | 
					
						
						|  | output_dim: int = 4, | 
					
						
						|  | activation: str = "inv_log", | 
					
						
						|  | conf_activation: str = "expp1", | 
					
						
						|  | features: int = 256, | 
					
						
						|  | out_channels: List[int] = [256, 512, 1024, 1024], | 
					
						
						|  | intermediate_layer_idx: List[int] = [4, 11, 17, 23], | 
					
						
						|  | pos_embed: bool = True, | 
					
						
						|  | feature_only: bool = False, | 
					
						
						|  | down_ratio: int = 1, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super(DPTHead, self).__init__() | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.activation = activation | 
					
						
						|  | self.conf_activation = conf_activation | 
					
						
						|  | self.pos_embed = pos_embed | 
					
						
						|  | self.feature_only = feature_only | 
					
						
						|  | self.down_ratio = down_ratio | 
					
						
						|  | self.intermediate_layer_idx = intermediate_layer_idx | 
					
						
						|  |  | 
					
						
						|  | self.norm = nn.LayerNorm(dim_in) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.projects = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | in_channels=dim_in, | 
					
						
						|  | out_channels=oc, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | stride=1, | 
					
						
						|  | padding=0, | 
					
						
						|  | ) | 
					
						
						|  | for oc in out_channels | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.resize_layers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | nn.ConvTranspose2d( | 
					
						
						|  | in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 | 
					
						
						|  | ), | 
					
						
						|  | nn.ConvTranspose2d( | 
					
						
						|  | in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 | 
					
						
						|  | ), | 
					
						
						|  | nn.Identity(), | 
					
						
						|  | nn.Conv2d( | 
					
						
						|  | in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.scratch = _make_scratch( | 
					
						
						|  | out_channels, | 
					
						
						|  | features, | 
					
						
						|  | expand=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.scratch.stem_transpose = None | 
					
						
						|  | self.scratch.refinenet1 = _make_fusion_block(features) | 
					
						
						|  | self.scratch.refinenet2 = _make_fusion_block(features) | 
					
						
						|  | self.scratch.refinenet3 = _make_fusion_block(features) | 
					
						
						|  | self.scratch.refinenet4 = _make_fusion_block(features, has_residual=False) | 
					
						
						|  |  | 
					
						
						|  | head_features_1 = features | 
					
						
						|  | head_features_2 = 32 | 
					
						
						|  |  | 
					
						
						|  | if feature_only: | 
					
						
						|  | self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1) | 
					
						
						|  | else: | 
					
						
						|  | self.scratch.output_conv1 = nn.Conv2d( | 
					
						
						|  | head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1 | 
					
						
						|  | ) | 
					
						
						|  | conv2_in_channels = head_features_1 // 2 | 
					
						
						|  |  | 
					
						
						|  | self.scratch.output_conv2 = nn.Sequential( | 
					
						
						|  | nn.Conv2d(conv2_in_channels, head_features_2, kernel_size=3, stride=1, padding=1), | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | nn.Conv2d(head_features_2, output_dim, kernel_size=1, stride=1, padding=0), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | aggregated_tokens_list: List[torch.Tensor], | 
					
						
						|  | images: torch.Tensor, | 
					
						
						|  | patch_start_idx: int, | 
					
						
						|  | frames_chunk_size: int = 8, | 
					
						
						|  | ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | 
					
						
						|  | """ | 
					
						
						|  | Forward pass through the DPT head, supports processing by chunking frames. | 
					
						
						|  | Args: | 
					
						
						|  | aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. | 
					
						
						|  | images (Tensor): Input images with shape [B, S, 3, H, W], in range [0, 1]. | 
					
						
						|  | patch_start_idx (int): Starting index for patch tokens in the token sequence. | 
					
						
						|  | Used to separate patch tokens from other tokens (e.g., camera or register tokens). | 
					
						
						|  | frames_chunk_size (int, optional): Number of frames to process in each chunk. | 
					
						
						|  | If None or larger than S, all frames are processed at once. Default: 8. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Tensor or Tuple[Tensor, Tensor]: | 
					
						
						|  | - If feature_only=True: Feature maps with shape [B, S, C, H, W] | 
					
						
						|  | - Otherwise: Tuple of (predictions, confidence) both with shape [B, S, 1, H, W] | 
					
						
						|  | """ | 
					
						
						|  | B, S, _, H, W = images.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if frames_chunk_size is None or frames_chunk_size >= S: | 
					
						
						|  | return self._forward_impl(aggregated_tokens_list, images, patch_start_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert frames_chunk_size > 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_preds = [] | 
					
						
						|  | all_conf = [] | 
					
						
						|  |  | 
					
						
						|  | for frames_start_idx in range(0, S, frames_chunk_size): | 
					
						
						|  | frames_end_idx = min(frames_start_idx + frames_chunk_size, S) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.feature_only: | 
					
						
						|  | chunk_output = self._forward_impl( | 
					
						
						|  | aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx | 
					
						
						|  | ) | 
					
						
						|  | all_preds.append(chunk_output) | 
					
						
						|  | else: | 
					
						
						|  | chunk_preds, chunk_conf = self._forward_impl( | 
					
						
						|  | aggregated_tokens_list, images, patch_start_idx, frames_start_idx, frames_end_idx | 
					
						
						|  | ) | 
					
						
						|  | all_preds.append(chunk_preds) | 
					
						
						|  | all_conf.append(chunk_conf) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.feature_only: | 
					
						
						|  | return torch.cat(all_preds, dim=1) | 
					
						
						|  | else: | 
					
						
						|  | return torch.cat(all_preds, dim=1), torch.cat(all_conf, dim=1) | 
					
						
						|  |  | 
					
						
						|  | def _forward_impl( | 
					
						
						|  | self, | 
					
						
						|  | aggregated_tokens_list: List[torch.Tensor], | 
					
						
						|  | images: torch.Tensor, | 
					
						
						|  | patch_start_idx: int, | 
					
						
						|  | frames_start_idx: int = None, | 
					
						
						|  | frames_end_idx: int = None, | 
					
						
						|  | ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | 
					
						
						|  | """ | 
					
						
						|  | Implementation of the forward pass through the DPT head. | 
					
						
						|  |  | 
					
						
						|  | This method processes a specific chunk of frames from the sequence. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | aggregated_tokens_list (List[Tensor]): List of token tensors from different transformer layers. | 
					
						
						|  | images (Tensor): Input images with shape [B, S, 3, H, W]. | 
					
						
						|  | patch_start_idx (int): Starting index for patch tokens. | 
					
						
						|  | frames_start_idx (int, optional): Starting index for frames to process. | 
					
						
						|  | frames_end_idx (int, optional): Ending index for frames to process. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Tensor or Tuple[Tensor, Tensor]: Feature maps or (predictions, confidence). | 
					
						
						|  | """ | 
					
						
						|  | if frames_start_idx is not None and frames_end_idx is not None: | 
					
						
						|  | images = images[:, frames_start_idx:frames_end_idx] | 
					
						
						|  |  | 
					
						
						|  | B, S, _, H, W = images.shape | 
					
						
						|  |  | 
					
						
						|  | patch_h, patch_w = H // self.patch_size, W // self.patch_size | 
					
						
						|  |  | 
					
						
						|  | out = [] | 
					
						
						|  | dpt_idx = 0 | 
					
						
						|  |  | 
					
						
						|  | for layer_idx in self.intermediate_layer_idx: | 
					
						
						|  |  | 
					
						
						|  | if len(aggregated_tokens_list) > 10: | 
					
						
						|  | x = aggregated_tokens_list[layer_idx][:, :, patch_start_idx:] | 
					
						
						|  | else: | 
					
						
						|  | list_idx = self.intermediate_layer_idx.index(layer_idx) | 
					
						
						|  | x = aggregated_tokens_list[list_idx][:, :, patch_start_idx:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if frames_start_idx is not None and frames_end_idx is not None: | 
					
						
						|  | x = x[:, frames_start_idx:frames_end_idx].contiguous() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(B * S, -1, x.shape[-1]) | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)) | 
					
						
						|  |  | 
					
						
						|  | x = self.projects[dpt_idx](x) | 
					
						
						|  | if self.pos_embed: | 
					
						
						|  | x = self._apply_pos_embed(x, W, H) | 
					
						
						|  |  | 
					
						
						|  | x = self.resize_layers[dpt_idx](x) | 
					
						
						|  |  | 
					
						
						|  | out.append(x) | 
					
						
						|  | dpt_idx += 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch_forward(out) | 
					
						
						|  |  | 
					
						
						|  | out = custom_interpolate( | 
					
						
						|  | out, | 
					
						
						|  | (int(patch_h * self.patch_size / self.down_ratio), int(patch_w * self.patch_size / self.down_ratio)), | 
					
						
						|  | mode="bilinear", | 
					
						
						|  | align_corners=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.pos_embed: | 
					
						
						|  | out = self._apply_pos_embed(out, W, H) | 
					
						
						|  |  | 
					
						
						|  | if self.feature_only: | 
					
						
						|  | return out.view(B, S, *out.shape[1:]) | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.output_conv2(out) | 
					
						
						|  | preds, conf = activate_head(out, activation=self.activation, conf_activation=self.conf_activation) | 
					
						
						|  |  | 
					
						
						|  | preds = preds.view(B, S, *preds.shape[1:]) | 
					
						
						|  | conf = conf.view(B, S, *conf.shape[1:]) | 
					
						
						|  | return preds, conf | 
					
						
						|  |  | 
					
						
						|  | def _apply_pos_embed(self, x: torch.Tensor, W: int, H: int, ratio: float = 0.1) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Apply positional embedding to tensor x. | 
					
						
						|  | """ | 
					
						
						|  | patch_w = x.shape[-1] | 
					
						
						|  | patch_h = x.shape[-2] | 
					
						
						|  | pos_embed = create_uv_grid(patch_w, patch_h, aspect_ratio=W / H, dtype=x.dtype, device=x.device) | 
					
						
						|  | pos_embed = position_grid_to_embed(pos_embed, x.shape[1]) | 
					
						
						|  | pos_embed = pos_embed * ratio | 
					
						
						|  | pos_embed = pos_embed.permute(2, 0, 1)[None].expand(x.shape[0], -1, -1, -1) | 
					
						
						|  | return x + pos_embed | 
					
						
						|  |  | 
					
						
						|  | def scratch_forward(self, features: List[torch.Tensor]) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Forward pass through the fusion blocks. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | features (List[Tensor]): List of feature maps from different layers. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | Tensor: Fused feature map. | 
					
						
						|  | """ | 
					
						
						|  | layer_1, layer_2, layer_3, layer_4 = features | 
					
						
						|  |  | 
					
						
						|  | layer_1_rn = self.scratch.layer1_rn(layer_1) | 
					
						
						|  | layer_2_rn = self.scratch.layer2_rn(layer_2) | 
					
						
						|  | layer_3_rn = self.scratch.layer3_rn(layer_3) | 
					
						
						|  | layer_4_rn = self.scratch.layer4_rn(layer_4) | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:]) | 
					
						
						|  | del layer_4_rn, layer_4 | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.refinenet3(out, layer_3_rn, size=layer_2_rn.shape[2:]) | 
					
						
						|  | del layer_3_rn, layer_3 | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.refinenet2(out, layer_2_rn, size=layer_1_rn.shape[2:]) | 
					
						
						|  | del layer_2_rn, layer_2 | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.refinenet1(out, layer_1_rn) | 
					
						
						|  | del layer_1_rn, layer_1 | 
					
						
						|  |  | 
					
						
						|  | out = self.scratch.output_conv1(out) | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_fusion_block(features: int, size: int = None, has_residual: bool = True, groups: int = 1) -> nn.Module: | 
					
						
						|  | return FeatureFusionBlock( | 
					
						
						|  | features, | 
					
						
						|  | nn.ReLU(inplace=True), | 
					
						
						|  | deconv=False, | 
					
						
						|  | bn=False, | 
					
						
						|  | expand=False, | 
					
						
						|  | align_corners=True, | 
					
						
						|  | size=size, | 
					
						
						|  | has_residual=has_residual, | 
					
						
						|  | groups=groups, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _make_scratch(in_shape: List[int], out_shape: int, groups: int = 1, expand: bool = False) -> nn.Module: | 
					
						
						|  | scratch = nn.Module() | 
					
						
						|  | out_shape1 = out_shape | 
					
						
						|  | out_shape2 = out_shape | 
					
						
						|  | out_shape3 = out_shape | 
					
						
						|  | if len(in_shape) >= 4: | 
					
						
						|  | out_shape4 = out_shape | 
					
						
						|  |  | 
					
						
						|  | if expand: | 
					
						
						|  | out_shape1 = out_shape | 
					
						
						|  | out_shape2 = out_shape * 2 | 
					
						
						|  | out_shape3 = out_shape * 4 | 
					
						
						|  | if len(in_shape) >= 4: | 
					
						
						|  | out_shape4 = out_shape * 8 | 
					
						
						|  |  | 
					
						
						|  | scratch.layer1_rn = nn.Conv2d( | 
					
						
						|  | in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | 
					
						
						|  | ) | 
					
						
						|  | scratch.layer2_rn = nn.Conv2d( | 
					
						
						|  | in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | 
					
						
						|  | ) | 
					
						
						|  | scratch.layer3_rn = nn.Conv2d( | 
					
						
						|  | in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | 
					
						
						|  | ) | 
					
						
						|  | if len(in_shape) >= 4: | 
					
						
						|  | scratch.layer4_rn = nn.Conv2d( | 
					
						
						|  | in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | 
					
						
						|  | ) | 
					
						
						|  | return scratch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResidualConvUnit(nn.Module): | 
					
						
						|  | """Residual convolution module.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, features, activation, bn, groups=1): | 
					
						
						|  | """Init. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | features (int): number of features | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.bn = bn | 
					
						
						|  | self.groups = groups | 
					
						
						|  | self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) | 
					
						
						|  | self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups) | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = None | 
					
						
						|  | self.norm2 = None | 
					
						
						|  |  | 
					
						
						|  | self.activation = activation | 
					
						
						|  | self.skip_add = nn.quantized.FloatFunctional() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | """Forward pass. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | x (tensor): input | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | tensor: output | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | out = self.activation(x) | 
					
						
						|  | out = self.conv1(out) | 
					
						
						|  | if self.norm1 is not None: | 
					
						
						|  | out = self.norm1(out) | 
					
						
						|  |  | 
					
						
						|  | out = self.activation(out) | 
					
						
						|  | out = self.conv2(out) | 
					
						
						|  | if self.norm2 is not None: | 
					
						
						|  | out = self.norm2(out) | 
					
						
						|  |  | 
					
						
						|  | return self.skip_add.add(out, x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FeatureFusionBlock(nn.Module): | 
					
						
						|  | """Feature fusion block.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | features, | 
					
						
						|  | activation, | 
					
						
						|  | deconv=False, | 
					
						
						|  | bn=False, | 
					
						
						|  | expand=False, | 
					
						
						|  | align_corners=True, | 
					
						
						|  | size=None, | 
					
						
						|  | has_residual=True, | 
					
						
						|  | groups=1, | 
					
						
						|  | ): | 
					
						
						|  | """Init. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | features (int): number of features | 
					
						
						|  | """ | 
					
						
						|  | super(FeatureFusionBlock, self).__init__() | 
					
						
						|  |  | 
					
						
						|  | self.deconv = deconv | 
					
						
						|  | self.align_corners = align_corners | 
					
						
						|  | self.groups = groups | 
					
						
						|  | self.expand = expand | 
					
						
						|  | out_features = features | 
					
						
						|  | if self.expand == True: | 
					
						
						|  | out_features = features // 2 | 
					
						
						|  |  | 
					
						
						|  | self.out_conv = nn.Conv2d( | 
					
						
						|  | features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=self.groups | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if has_residual: | 
					
						
						|  | self.resConfUnit1 = ResidualConvUnit(features, activation, bn, groups=self.groups) | 
					
						
						|  |  | 
					
						
						|  | self.has_residual = has_residual | 
					
						
						|  | self.resConfUnit2 = ResidualConvUnit(features, activation, bn, groups=self.groups) | 
					
						
						|  |  | 
					
						
						|  | self.skip_add = nn.quantized.FloatFunctional() | 
					
						
						|  | self.size = size | 
					
						
						|  |  | 
					
						
						|  | def forward(self, *xs, size=None): | 
					
						
						|  | """Forward pass. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | tensor: output | 
					
						
						|  | """ | 
					
						
						|  | output = xs[0] | 
					
						
						|  |  | 
					
						
						|  | if self.has_residual: | 
					
						
						|  | res = self.resConfUnit1(xs[1]) | 
					
						
						|  | output = self.skip_add.add(output, res) | 
					
						
						|  |  | 
					
						
						|  | output = self.resConfUnit2(output) | 
					
						
						|  |  | 
					
						
						|  | if (size is None) and (self.size is None): | 
					
						
						|  | modifier = {"scale_factor": 2} | 
					
						
						|  | elif size is None: | 
					
						
						|  | modifier = {"size": self.size} | 
					
						
						|  | else: | 
					
						
						|  | modifier = {"size": size} | 
					
						
						|  |  | 
					
						
						|  | output = custom_interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners) | 
					
						
						|  | output = self.out_conv(output) | 
					
						
						|  |  | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def custom_interpolate( | 
					
						
						|  | x: torch.Tensor, | 
					
						
						|  | size: Tuple[int, int] = None, | 
					
						
						|  | scale_factor: float = None, | 
					
						
						|  | mode: str = "bilinear", | 
					
						
						|  | align_corners: bool = True, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | Custom interpolate to avoid INT_MAX issues in nn.functional.interpolate. | 
					
						
						|  | """ | 
					
						
						|  | if size is None: | 
					
						
						|  | size = (int(x.shape[-2] * scale_factor), int(x.shape[-1] * scale_factor)) | 
					
						
						|  |  | 
					
						
						|  | INT_MAX = 1610612736 | 
					
						
						|  |  | 
					
						
						|  | input_elements = size[0] * size[1] * x.shape[0] * x.shape[1] | 
					
						
						|  |  | 
					
						
						|  | if input_elements > INT_MAX: | 
					
						
						|  | chunks = torch.chunk(x, chunks=(input_elements // INT_MAX) + 1, dim=0) | 
					
						
						|  | interpolated_chunks = [ | 
					
						
						|  | nn.functional.interpolate(chunk, size=size, mode=mode, align_corners=align_corners) for chunk in chunks | 
					
						
						|  | ] | 
					
						
						|  | x = torch.cat(interpolated_chunks, dim=0) | 
					
						
						|  | return x.contiguous() | 
					
						
						|  | else: | 
					
						
						|  | return nn.functional.interpolate(x, size=size, mode=mode, align_corners=align_corners) | 
					
						
						|  |  |