Update utils.py
Browse files
utils.py
CHANGED
|
@@ -54,6 +54,10 @@ from langchain_core.pydantic_v1 import BaseModel, Field
|
|
| 54 |
from langchain_core.runnables import RunnablePassthrough
|
| 55 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 56 |
from chromadb.errors import InvalidDimensionException
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
#import io
|
| 58 |
#from PIL import Image, ImageDraw, ImageOps, ImageFont
|
| 59 |
#import base64
|
|
@@ -201,7 +205,7 @@ def clean_text(text):
|
|
| 201 |
##################################################
|
| 202 |
##################################################
|
| 203 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
| 204 |
-
def
|
| 205 |
#verscheidene Dokument loaders:
|
| 206 |
loaders = {
|
| 207 |
'.pdf': PyPDFLoader,
|
|
@@ -212,6 +216,64 @@ def create_directory_loader(file_type, directory_path):
|
|
| 212 |
glob=f"**/*{file_type}",
|
| 213 |
loader_cls=loaders[file_type],
|
| 214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
################################################
|
| 216 |
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits
|
| 217 |
def document_loading_splitting():
|
|
@@ -252,9 +314,15 @@ def document_loading_splitting():
|
|
| 252 |
###########################################
|
| 253 |
#Chroma DB die splits ablegen - vektorisiert...
|
| 254 |
def document_storage_chroma(splits):
|
| 255 |
-
#
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
| 257 |
retriever = vectorstore.as_retriever(search_kwargs = {"k": ANZAHL_DOCS})
|
|
|
|
|
|
|
|
|
|
| 258 |
return vectorstore, retriever
|
| 259 |
|
| 260 |
############################################
|
|
@@ -377,16 +445,16 @@ def extract_document_info(documents):
|
|
| 377 |
extracted_info = []
|
| 378 |
for doc in documents:
|
| 379 |
info = {
|
| 380 |
-
'content': doc
|
| 381 |
-
'
|
| 382 |
-
'
|
|
|
|
|
|
|
| 383 |
}
|
| 384 |
extracted_info.append(info)
|
| 385 |
return extracted_info
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
|
| 391 |
|
| 392 |
###################################################
|
|
|
|
| 54 |
from langchain_core.runnables import RunnablePassthrough
|
| 55 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 56 |
from chromadb.errors import InvalidDimensionException
|
| 57 |
+
import fitz # PyMuPDF
|
| 58 |
+
import docx
|
| 59 |
+
from langchain.document_loaders import DirectoryLoader
|
| 60 |
+
from langchain.document_loaders.pydantic import Document
|
| 61 |
#import io
|
| 62 |
#from PIL import Image, ImageDraw, ImageOps, ImageFont
|
| 63 |
#import base64
|
|
|
|
| 205 |
##################################################
|
| 206 |
##################################################
|
| 207 |
# Funktion, um für einen best. File-typ ein directory-loader zu definieren
|
| 208 |
+
def create_directory_loaderBack(file_type, directory_path):
|
| 209 |
#verscheidene Dokument loaders:
|
| 210 |
loaders = {
|
| 211 |
'.pdf': PyPDFLoader,
|
|
|
|
| 216 |
glob=f"**/*{file_type}",
|
| 217 |
loader_cls=loaders[file_type],
|
| 218 |
)
|
| 219 |
+
|
| 220 |
+
#besseren directory Loader als CustomLoader definieren, der den inhalt des dokuemnts, die seitenzahlen, die überschriften und die pfadezu den dokumenten extrahieren
|
| 221 |
+
def create_directory_loader(file_type, directory_path):
|
| 222 |
+
loaders = {
|
| 223 |
+
'.pdf': load_pdf_with_metadata,
|
| 224 |
+
'.word': load_word_with_metadata,
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
class CustomLoader:
|
| 228 |
+
def __init__(self, directory_path, file_type, loader_func):
|
| 229 |
+
self.directory_path = directory_path
|
| 230 |
+
self.file_type = file_type
|
| 231 |
+
self.loader_func = loader_func
|
| 232 |
+
|
| 233 |
+
def load(self):
|
| 234 |
+
documents = []
|
| 235 |
+
for root, _, files in os.walk(self.directory_path):
|
| 236 |
+
for file in files:
|
| 237 |
+
if file.endswith(self.file_type):
|
| 238 |
+
file_path = os.path.join(root, file)
|
| 239 |
+
documents.extend(self.loader_func(file_path))
|
| 240 |
+
return documents
|
| 241 |
+
|
| 242 |
+
return CustomLoader(directory_path, file_type, loaders[file_type])
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
################################################
|
| 246 |
+
# Custom Loader-Funktionen zu dem DirektoryLoader
|
| 247 |
+
# Custom loader functions
|
| 248 |
+
def load_pdf_with_metadata(file_path):
|
| 249 |
+
document = fitz.open(file_path)
|
| 250 |
+
documents = []
|
| 251 |
+
for page_num in range(len(document)):
|
| 252 |
+
page = document.load_page(page_num)
|
| 253 |
+
content = page.get_text("text")
|
| 254 |
+
metadata = {
|
| 255 |
+
"title": document.metadata.get("title", "Unbekannt"),
|
| 256 |
+
"page": page_num + 1,
|
| 257 |
+
"path": file_path
|
| 258 |
+
}
|
| 259 |
+
documents.append(Document(content=content, metadata=metadata))
|
| 260 |
+
return documents
|
| 261 |
+
|
| 262 |
+
def load_word_with_metadata(file_path):
|
| 263 |
+
document = docx.Document(file_path)
|
| 264 |
+
metadata = {
|
| 265 |
+
"title": "Dokument",
|
| 266 |
+
"path": file_path
|
| 267 |
+
}
|
| 268 |
+
contents = []
|
| 269 |
+
for para in document.paragraphs:
|
| 270 |
+
content = para.text
|
| 271 |
+
# Hier wird keine Seitenzahl verwendet, aber Sie können zusätzliche Logik hinzufügen
|
| 272 |
+
contents.append(Document(content=content, metadata={**metadata, "page": 1}))
|
| 273 |
+
return contents
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
################################################
|
| 278 |
#die Inhalte splitten, um in Vektordatenbank entsprechend zu laden als Splits
|
| 279 |
def document_loading_splitting():
|
|
|
|
| 314 |
###########################################
|
| 315 |
#Chroma DB die splits ablegen - vektorisiert...
|
| 316 |
def document_storage_chroma(splits):
|
| 317 |
+
# Embedding-Funktion definieren
|
| 318 |
+
embedding_fn = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
| 319 |
+
|
| 320 |
+
# Vectorstore initialisieren und Dokumente hinzufügen
|
| 321 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_fn, persist_directory=CHROMA_DIR)
|
| 322 |
retriever = vectorstore.as_retriever(search_kwargs = {"k": ANZAHL_DOCS})
|
| 323 |
+
# Persist the vectorstore to disk
|
| 324 |
+
vectorstore.persist()
|
| 325 |
+
|
| 326 |
return vectorstore, retriever
|
| 327 |
|
| 328 |
############################################
|
|
|
|
| 445 |
extracted_info = []
|
| 446 |
for doc in documents:
|
| 447 |
info = {
|
| 448 |
+
'content' : doc["content"]
|
| 449 |
+
'metadaten' : doc["metadata"]
|
| 450 |
+
'titel' : metadaten.get("title", "Keine Überschrift")
|
| 451 |
+
'seite' : metadaten.get("page", "Unbekannte Seite")
|
| 452 |
+
'pfad' : metadaten.get("path", "Kein Pfad verfügbar")
|
| 453 |
}
|
| 454 |
extracted_info.append(info)
|
| 455 |
return extracted_info
|
| 456 |
|
| 457 |
+
|
|
|
|
|
|
|
| 458 |
|
| 459 |
|
| 460 |
###################################################
|