Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from langchain.document_loaders.parsers import OpenAIWhisperParser
|
|
| 13 |
from langchain.schema import AIMessage, HumanMessage
|
| 14 |
from langchain.llms import HuggingFaceHub
|
| 15 |
from langchain.llms import HuggingFaceTextGenInference
|
| 16 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 17 |
|
| 18 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 19 |
from langchain.prompts import PromptTemplate
|
|
@@ -182,8 +182,11 @@ def document_storage_mongodb(splits):
|
|
| 182 |
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
|
| 183 |
def document_retrieval_chroma(llm, prompt):
|
| 184 |
#embeddings = OpenAIEmbeddings()
|
| 185 |
-
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen
|
| 186 |
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
|
|
|
|
|
|
|
|
|
| 187 |
db = Chroma(embedding_function = embeddings,
|
| 188 |
persist_directory = PATH_WORK + CHROMA_DIR)
|
| 189 |
|
|
|
|
| 13 |
from langchain.schema import AIMessage, HumanMessage
|
| 14 |
from langchain.llms import HuggingFaceHub
|
| 15 |
from langchain.llms import HuggingFaceTextGenInference
|
| 16 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings, HuggingFaceBgeEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
| 17 |
|
| 18 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 19 |
from langchain.prompts import PromptTemplate
|
|
|
|
| 182 |
#dokumente in chroma db vektorisiert ablegen können - die Db vorbereiten daüfur
|
| 183 |
def document_retrieval_chroma(llm, prompt):
|
| 184 |
#embeddings = OpenAIEmbeddings()
|
| 185 |
+
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen - die ...InstructEmbedding ist sehr rechenaufwendig
|
| 186 |
embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
| 187 |
+
#etwas weniger rechenaufwendig:
|
| 188 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
| 189 |
+
|
| 190 |
db = Chroma(embedding_function = embeddings,
|
| 191 |
persist_directory = PATH_WORK + CHROMA_DIR)
|
| 192 |
|