Update utils.py
Browse files
utils.py
CHANGED
|
@@ -67,7 +67,7 @@ from nltk.corpus import stopwords
|
|
| 67 |
from nltk.tokenize import word_tokenize
|
| 68 |
from nltk.stem import WordNetLemmatizer, PorterStemmer
|
| 69 |
from nltk.tokenize import RegexpTokenizer
|
| 70 |
-
from transformers import BertModel, BertTokenizer
|
| 71 |
from nltk.stem.snowball import SnowballStemmer
|
| 72 |
|
| 73 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
@@ -397,12 +397,19 @@ def rag_chain(llm, prompt, retriever):
|
|
| 397 |
#############################################
|
| 398 |
#Verschiedene LLMs ausprobieren
|
| 399 |
#############################################
|
| 400 |
-
#Alternative, wenn llm direkt übergeben....................................
|
| 401 |
#llm_chain = LLMChain(llm = llm, prompt = RAG_CHAIN_PROMPT)
|
| 402 |
#answer = llm_chain.run({"context": combined_content, "question": prompt})
|
| 403 |
-
|
|
|
|
|
|
|
| 404 |
answer = query(llm, {"inputs": input_text,})
|
| 405 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
# Erstelle das Ergebnis-Dictionary
|
| 407 |
result = {
|
| 408 |
"answer": answer,
|
|
|
|
| 67 |
from nltk.tokenize import word_tokenize
|
| 68 |
from nltk.stem import WordNetLemmatizer, PorterStemmer
|
| 69 |
from nltk.tokenize import RegexpTokenizer
|
| 70 |
+
from transformers import BertModel, BertTokenizer, pipeline
|
| 71 |
from nltk.stem.snowball import SnowballStemmer
|
| 72 |
|
| 73 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
|
| 397 |
#############################################
|
| 398 |
#Verschiedene LLMs ausprobieren
|
| 399 |
#############################################
|
| 400 |
+
#1. Alternative, wenn llm direkt übergeben....................................
|
| 401 |
#llm_chain = LLMChain(llm = llm, prompt = RAG_CHAIN_PROMPT)
|
| 402 |
#answer = llm_chain.run({"context": combined_content, "question": prompt})
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
#2. Alternative, wenn mit API_URL ...........................................
|
| 406 |
answer = query(llm, {"inputs": input_text,})
|
| 407 |
|
| 408 |
+
#3. Alternative: mit pipeline
|
| 409 |
+
#messages = [{"role": "user", "content": input_text},]
|
| 410 |
+
#pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True)
|
| 411 |
+
#answer = pipe(messages)
|
| 412 |
+
|
| 413 |
# Erstelle das Ergebnis-Dictionary
|
| 414 |
result = {
|
| 415 |
"answer": answer,
|