Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,6 +53,7 @@ RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
|
|
| 53 |
template = rag_template)
|
| 54 |
|
| 55 |
#Pfad, wo Docs abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
|
|
|
|
| 56 |
CHROMA_DIR = "/data/chroma"
|
| 57 |
YOUTUBE_DIR = "/data/youtube"
|
| 58 |
|
|
@@ -62,7 +63,7 @@ YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
|
|
| 62 |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
| 63 |
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
|
| 64 |
|
| 65 |
-
MODEL_NAME = "gpt-
|
| 66 |
|
| 67 |
def document_loading_splitting():
|
| 68 |
# Document loading
|
|
@@ -96,9 +97,14 @@ def document_storage_mongodb(splits):
|
|
| 96 |
collection = MONGODB_COLLECTION,
|
| 97 |
index_name = MONGODB_INDEX_NAME)
|
| 98 |
|
| 99 |
-
def document_retrieval_chroma(llm, prompt):
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
return db
|
| 103 |
|
| 104 |
def document_retrieval_mongodb(llm, prompt):
|
|
|
|
| 53 |
template = rag_template)
|
| 54 |
|
| 55 |
#Pfad, wo Docs abgelegt werden können - lokal, also hier im HF Space (sonst auf eigenem Rechner)
|
| 56 |
+
PATH_WORK = "."
|
| 57 |
CHROMA_DIR = "/data/chroma"
|
| 58 |
YOUTUBE_DIR = "/data/youtube"
|
| 59 |
|
|
|
|
| 63 |
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
|
| 64 |
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
|
| 65 |
|
| 66 |
+
MODEL_NAME = "gpt-3.5-turbo-16k"
|
| 67 |
|
| 68 |
def document_loading_splitting():
|
| 69 |
# Document loading
|
|
|
|
| 97 |
collection = MONGODB_COLLECTION,
|
| 98 |
index_name = MONGODB_INDEX_NAME)
|
| 99 |
|
| 100 |
+
def document_retrieval_chroma(llm, prompt):
|
| 101 |
+
embeddings = OpenAIEmbeddings()
|
| 102 |
+
#Alternative Embedding - für Vektorstore, um Ähnlichkeitsvektoren zu erzeugen
|
| 103 |
+
#embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
| 104 |
+
db = Chroma(embedding_function = embeddings,
|
| 105 |
+
#persist_directory = CHROMA_DIR)
|
| 106 |
+
persist_directory = path_work + '/chroma',
|
| 107 |
+
|
| 108 |
return db
|
| 109 |
|
| 110 |
def document_retrieval_mongodb(llm, prompt):
|