Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,45 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
import torch
|
4 |
|
5 |
+
# Initialize the model and processor
|
6 |
+
processor = AutoImageProcessor.from_pretrained("alexdekan030/autotrain-awcru-nr8j7")
|
7 |
+
model = AutoModelForImageClassification.from_pretrained("alexdekan030/autotrain-awcru-nr8j7")
|
8 |
+
pipe = pipeline("image-classification", model=model, image_processor=processor)
|
9 |
|
10 |
+
def predict_pneumonia(image):
|
11 |
+
"""
|
12 |
+
Predict whether an image shows pneumonia or normal chest X-ray
|
13 |
+
Args:
|
14 |
+
image: Input image
|
15 |
+
Returns:
|
16 |
+
dict: Dictionary containing prediction probabilities
|
17 |
+
"""
|
18 |
+
# Make prediction
|
19 |
+
result = pipe(image)
|
20 |
+
|
21 |
+
# Create a formatted output dictionary
|
22 |
+
probabilities = {pred['label']: float(pred['score']) for pred in result}
|
23 |
+
|
24 |
+
return probabilities
|
25 |
+
|
26 |
+
# Create the Gradio interface
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=predict_pneumonia,
|
29 |
+
inputs=gr.Image(type="pil"),
|
30 |
+
outputs=gr.Label(num_top_classes=2),
|
31 |
+
title="Pneumonia Detection from Chest X-rays",
|
32 |
+
description="""Upload a chest X-ray image to detect if it shows signs of pneumonia.
|
33 |
+
The model will classify the image as either 'NORMAL' or 'PNEUMONIA'
|
34 |
+
and provide confidence scores for each class.""",
|
35 |
+
examples=[
|
36 |
+
# You can add example images here if you have them
|
37 |
+
# ["path/to/example1.jpg"],
|
38 |
+
# ["path/to/example2.jpg"]
|
39 |
+
],
|
40 |
+
theme=gr.themes.Base()
|
41 |
+
)
|
42 |
+
|
43 |
+
# Launch the app
|
44 |
+
if __name__ == "__main__":
|
45 |
+
demo.launch(share=True)
|