File size: 11,569 Bytes
23afe01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3fb70
 
 
 
 
 
 
 
23afe01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f3fb70
23afe01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aa7eb
23afe01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aa7eb
 
23afe01
6f3fb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23afe01
 
 
6f3fb70
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import imageio
import replicate
import gradio as gr
from dotenv import load_dotenv
from langfuse import Langfuse, observe, get_client
import numpy as np
import openai 
import json 
from pydantic import BaseModel, conint
from utils import encode_image
import asyncio
import logfire
from agents import (
    Agent,
    function_tool,
    Runner,
    WebSearchTool,
)
import tempfile
from functools import partial, update_wrapper
from visual_search_agent import seach_google_for_images
from agents import Agent, ItemHelpers, Runner, TResponseInputItem, trace

load_dotenv()
class ImageEvaluation(BaseModel):
    score: conint(ge=1, le=10)
    feedback: str

class HistoricalGrounding(BaseModel):
    general_description: str
    building_architecture: str
    roads: str
    transportation: str
    people: str
    people_clothing: str


logfire.configure(
    service_name='my_agent_service',
    send_to_logfire=False,
)
logfire.instrument_openai_agents() 
langfuse = get_client()


twoBC_prompt = """Imagine how this image would look like in the 2nd BC."""

client = openai.OpenAI()  # uses OPENAI_API_KEY

JUDGE_PROMPT = """
You are a historic critic. 
You are provided with the description of scenes, a location and a year. 
Your job is to judge how plausible the items describes belong that place at that era. 

You must penalize items that are out-of-time.
Do not appraise the framing, the camera position or the camera technology. 

You must rate this "truthfullness" on a scale of 1 to 10 
and pricesely point out items that are out of time. 
"""

@observe(name="image_captionning", capture_input=False, as_type="generation")  
def image_caption(image, working_directory):

    if isinstance(image, np.ndarray):
        temp_image_path = os.path.join(working_directory, "temp_input_image.png")
        imageio.imwrite(temp_image_path, image)
        image_path = temp_image_path
    else:
        image_path = image

    response = client.responses.create(
        model="o4-mini-2025-04-16",
        input=[{
            "role": "user",
            "content": [
                {"type": "input_text", "text": "Describe this image, focusing on the human-maid items in the picture: buildings, roads, cloths,..."},
                {
                    "type": "input_image",
                    "image_url": f"data:image/jpeg;base64,{encode_image(image_path)}",
                },
            ],
        }],
    )
    return response.output_text




@observe(name="llm_judge", capture_input=False, as_type="generation")  # creates a span; captures inputs/outputs automatically
def judge_answer(image_description, location, year):

    response = client.responses.parse(
        model="gpt-4o-mini",
        input=[
            {
            "role": "system",
            "content": [
                {"type": "input_text", "text": JUDGE_PROMPT},
            ],
            },
            {
            "role": "user",
            "content": [
                {"type": "input_text", "text": f" image description : {image_description} . location : {location} . year : {year}"}
            ],
        }],
        text_format=ImageEvaluation
    )
    return json.loads(response.output_text)


@observe(name="image-generation", as_type="generation")
def generate_image(picture_design, input_image, working_directory):
    """
    Calls the Replicate API to generate an image based on the input image.
    Args:
        prompt (str): The text prompt.
    Returns:
        str: Path to the generated image.
    """
    # Gradio provides the image as a numpy array, but the replicate library expects a file path
    # So we save the numpy array as a temporary image file

    prompt = f"""
    You are an expert photoshop user.
    You are given a photo and you must transform it as to what it would have looked like at a certain time period.

    You must apply the changes described in: {picture_design}
    """

    if isinstance(input_image, np.ndarray):
        temp_image_path = "temp_input_image.png"
        imageio.imwrite(temp_image_path, input_image)
        input_image = temp_image_path


    with open(input_image, "rb") as image_file:
        output = replicate.run(
            "black-forest-labs/flux-kontext-pro",
            input={
                "prompt": prompt,
                "input_image": image_file,
                "aspect_ratio": "match_input_image",
                "output_format": "jpg",
                "safety_tolerance": 2,
                "prompt_upsampling": False
            }
        )
    num_images = len(os.listdir(working_directory))
    output_image_path = os.path.join(working_directory, f"output_{num_images}.jpg")
    print(f"Writing image in {output_image_path}")
    with open(output_image_path, "wb") as f:
        for chunk in output:
            f.write(chunk)
            
    return output_image_path

def create_rewind(image, text, date):
    """
    Processes the inputs from Gradio and generates an image and text.
    """
    prompt = f"{text} The scene is captured in the year {date}."
    generated_image_path = generate_image(prompt)
    
    output_text = f"This is the scene as it might have appeared in the year {date}."
    
    return generated_image_path, output_text

@observe(name="historical_grounding", as_type="generation")
def get_historical_grounding(image_description, location, year):
    instructions=f"""You are a historian. You are given the description of an image, a location and a time period.
    You must reflect on what the scenary would look like at the period.
    The nature of the scenary must remain unchanged : a seaside scenary remains a seaside scenary, a town center must remain a town center. 
    Be as historical accurate as possible about the items present in the image. Use the tools provided to search for images and look up information on internet.
    
    For the visual description of the item, you can use the tools you are provided as well.
    """
    response = client.responses.parse(
        model="gpt-5-mini-2025-08-07",
        input=[
            {"role": "system", "content": instructions},
            {
                "role": "user",
                "content": f"image description: {image_description}, location: {location}, year: {year}",
            },
        ],
        text_format=HistoricalGrounding,
        tools=[{"type": "web_search_preview"}],
    )
    return response.output_text

def define_visual_cues_agent():
    visual_cues_agent = Agent(
    name="Visual Search Agent",
    instructions="""You search for visual cues to illustrate specific items within a specific time period.
    You provide a precise description of those items.
    You can use the tools provided to search for images and look up information on internet et specific images.""",
    model="gpt-5-mini-2025-08-07",
    tools=[seach_google_for_images, WebSearchTool()],
)
    return visual_cues_agent


def define_picture_designer_agent(image_path, working_directory):
    picture_designer_agent = Agent(
        name="Picture designer agent",
        instructions="""
        You are "picture designer" : you produce a text that will be used by an image generation tool
        You receive as input the description of an image and a historical grounding of what that scene would look like at certain period of time.  
        Your goal is to modify the items visible on the image in such a way, that it would plausible that this image has been taken at period of time. 

        For instance, if the image is a picture of the Eiffel tower in Paris and the period is 3th BC, obviously the eiffel tower should be replaced by something else.

        To help you in your task, you have access to the historical visual cue helper : this tool will provide you with precise descriptions of specific items, so that you can pricesely describe what to generate. 

        This text is to be interpreted by the image generation tool Replicate.
        Some items in the description might be flagged as violent (butcher's clever), sexual (prostitutes), unsanitary (wastes)
        Eliminate those possibly non-compliant items with the Replicate policy.
        """,
        model="o4-mini-2025-04-16",
        tools=[WebSearchTool()],
        handoffs=[define_visual_cues_agent()],
    )
    return picture_designer_agent


async def main(image_path, location, year) -> None:

    working_directory = tempfile.mkdtemp("_scene_rewind")
    print(f"Working in {working_directory}")

    with trace("LLM as a judge"):
        picture_description = image_caption(image_path, working_directory)
        historical_grounding = get_historical_grounding(picture_description, location, year)
        picture_designer_agent = define_picture_designer_agent(image_path, working_directory)
        

        input_items: list[TResponseInputItem] = [
            {
                "content": f"Description:{picture_description}\n Historical grounding: {historical_grounding}", 
                "role": "user"
            }]
        latest_outline: str | None = None
        

        while True:
            picture_design = await Runner.run(
                picture_designer_agent,
                input_items,
            )

            input_items = picture_design.to_input_list()
            latest_outline = ItemHelpers.text_message_outputs(picture_design.new_items)
            print("Story outline generated")

            try:
                output_path = generate_image(latest_outline, image_path, working_directory)
                created_image_caption = image_caption(output_path, working_directory)
                judgment = judge_answer(created_image_caption, location, year)
            except Exception:
                judgment = {
                    "score": 0,
                    "feedback": "The image could not be produced as the content of the prompt as been flagged as sensitive by Replicate"
                } 

            print(f"Evaluator score: {judgment['score']}")

            if judgment["score"] > 6:
                print("Story outline is good enough, exiting.")
                break

            print("Re-running with feedback")

            input_items.append({"content": f"Feedback: {judgment['feedback']}", "role": "user"})

    print(f"Final story outline: {latest_outline}")
    return output_path, historical_grounding


# Create Gradio interface
def create_interface():
    iface = gr.Interface(
        fn=main,  # Use wrapper function
        inputs=[
            gr.Image(type="numpy", label="Input Image"),
            gr.Textbox(label="Location/Prompt", placeholder="e.g., Paris, Times Square, etc."),
            gr.Slider(minimum=-2000, maximum=2000, value=1900, step=1, label="Target Year")
        ],
        outputs=[
            gr.Image(type="filepath", label="Historical Scene"),
            gr.Textbox(label="Historical Description")
        ],
        title="🕰️ Scene Rewind - Historical Time Travel",
        description="Upload an image of a location, specify the place, and select a year to see how it might have looked in the past!",
        examples=[
            ["images/paris.png", "Paris", 1700],
            ["images/newyork.jpg", "New York City", 1850],
        ] if False else None  # Set to True if you have example images
    )
    return iface


if __name__ == "__main__":
    # Option 1: Launch Gradio interface
    interface = create_interface()
    interface.launch(
        share=False,  # Set to True if you want a public link
        server_name="127.0.0.1",
        server_port=7860
    )