import cv2 import numpy as np def score_image(pil_img): img = np.array(pil_img.convert("L")) variance = cv2.Laplacian(img, cv2.CV_64F).var() return variance def evaluate_filters(images): scores = [score_image(img) for img in images] best_index = int(np.argmax(scores)) reasons = [f"Sharpness score: {s:.2f}" for s in scores] return best_index, reasons