Spaces:
Sleeping
Sleeping
Alexandros Popov
commited on
Commit
·
ece449a
1
Parent(s):
365224b
first set of filters.
Browse files- filters.py +102 -9
filters.py
CHANGED
|
@@ -1,15 +1,108 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
|
| 3 |
def apply_filters(image):
|
| 4 |
-
|
| 5 |
|
| 6 |
-
# Filter 1:
|
| 7 |
-
|
| 8 |
|
| 9 |
-
# Filter 2:
|
| 10 |
-
|
| 11 |
|
| 12 |
-
# Filter 3:
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
|
| 5 |
def apply_filters(image):
|
| 6 |
+
filtered_images = []
|
| 7 |
|
| 8 |
+
# Filter 1: Contrast adjustment
|
| 9 |
+
filtered_images.append(adjust_contrast(image))
|
| 10 |
|
| 11 |
+
# Filter 2: Saturation boost
|
| 12 |
+
filtered_images.append(adjust_saturation(image))
|
| 13 |
|
| 14 |
+
# Filter 3: Exposure adjustment
|
| 15 |
+
filtered_images.append(adjust_exposure(image))
|
| 16 |
|
| 17 |
+
# Filter 4: Denoised
|
| 18 |
+
filtered_images.append(denoise_image(image))
|
| 19 |
+
|
| 20 |
+
# Filter 5: Vignette effect
|
| 21 |
+
filtered_images.append(apply_vignette(image))
|
| 22 |
+
|
| 23 |
+
return filtered_images
|
| 24 |
+
|
| 25 |
+
def adjust_contrast(image, alpha=1.5):
|
| 26 |
+
"""
|
| 27 |
+
Adjusts the contrast of the image.
|
| 28 |
+
:param image: Input image (numpy array).
|
| 29 |
+
:param alpha: Contrast control (1.0-3.0). 1.0 means no change.
|
| 30 |
+
:return: Contrast adjusted image.
|
| 31 |
+
"""
|
| 32 |
+
return cv2.convertScaleAbs(image, alpha=alpha, beta=0)
|
| 33 |
+
|
| 34 |
+
def adjust_saturation(image, saturation_scale=1.0):
|
| 35 |
+
"""
|
| 36 |
+
Adjusts the saturation of the image.
|
| 37 |
+
:param image: Input image (numpy array).
|
| 38 |
+
:param saturation_scale: Saturation scale factor. 1.0 means no change.
|
| 39 |
+
:return: Saturation adjusted image.
|
| 40 |
+
"""
|
| 41 |
+
hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV).astype(np.float32)
|
| 42 |
+
hsv_img[:, :, 1] *= saturation_scale
|
| 43 |
+
hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1], 0, 255)
|
| 44 |
+
return cv2.cvtColor(hsv_img.astype(np.uint8), cv2.COLOR_HSV2BGR)
|
| 45 |
+
|
| 46 |
+
def adjust_exposure(image, beta=50):
|
| 47 |
+
"""
|
| 48 |
+
Adjusts the exposure (brightness) of the image.
|
| 49 |
+
:param image: Input image (numpy array).
|
| 50 |
+
:param beta: Brightness control. Positive values increase brightness, negative decrease.
|
| 51 |
+
:return: Exposure adjusted image.
|
| 52 |
+
"""
|
| 53 |
+
return cv2.convertScaleAbs(image, alpha=1.0, beta=beta)
|
| 54 |
+
|
| 55 |
+
def denoise_image(image, h=10):
|
| 56 |
+
"""
|
| 57 |
+
Denoises the image using Non-local Means Denoising algorithm.
|
| 58 |
+
:param image: Input image (numpy array).
|
| 59 |
+
:param h: Filter strength. Higher h value removes noise better but removes details.
|
| 60 |
+
:return: Denoised image.
|
| 61 |
+
"""
|
| 62 |
+
return cv2.fastNlMeansDenoisingColored(image, None, h, h, 7, 21)
|
| 63 |
+
|
| 64 |
+
def crop_image(image, x, y, width, height):
|
| 65 |
+
"""
|
| 66 |
+
Crops the image to the specified rectangle.
|
| 67 |
+
:param image: Input image (numpy array).
|
| 68 |
+
:param x: Top-left x-coordinate.
|
| 69 |
+
:param y: Top-left y-coordinate.
|
| 70 |
+
:param width: Width of the crop rectangle.
|
| 71 |
+
:param height: Height of the crop rectangle.
|
| 72 |
+
:return: Cropped image.
|
| 73 |
+
"""
|
| 74 |
+
return image[y:y+height, x:x+width]
|
| 75 |
+
|
| 76 |
+
def apply_vignette(image, level=2):
|
| 77 |
+
"""
|
| 78 |
+
Applies a vignette effect to the image.
|
| 79 |
+
:param image: Input image (numpy array).
|
| 80 |
+
:param level: Intensity of the vignette effect.
|
| 81 |
+
:return: Image with vignette effect applied.
|
| 82 |
+
"""
|
| 83 |
+
rows, cols = image.shape[:2]
|
| 84 |
+
kernel_x = cv2.getGaussianKernel(cols, cols/level)
|
| 85 |
+
kernel_y = cv2.getGaussianKernel(rows, rows/level)
|
| 86 |
+
kernel = kernel_y * kernel_x.T
|
| 87 |
+
mask = kernel / kernel.max()
|
| 88 |
+
vignette = np.copy(image)
|
| 89 |
+
for i in range(3):
|
| 90 |
+
vignette[:, :, i] = vignette[:, :, i] * mask
|
| 91 |
+
return vignette
|
| 92 |
+
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
# Load a test image
|
| 95 |
+
test_image = Image.open("toa-heftiba-Xmn-QXsVL4k-unsplash.jpg")
|
| 96 |
+
# Convert PIL Image to numpy array (BGR format for OpenCV)
|
| 97 |
+
test_image_np = np.array(test_image)
|
| 98 |
+
test_image_np = cv2.cvtColor(test_image_np, cv2.COLOR_RGB2BGR)
|
| 99 |
+
|
| 100 |
+
# Apply all filters
|
| 101 |
+
filtered_images = apply_filters(test_image_np)
|
| 102 |
+
|
| 103 |
+
# Save results
|
| 104 |
+
for i, filtered_img in enumerate(filtered_images):
|
| 105 |
+
# Convert back to RGB for saving
|
| 106 |
+
rgb_img = cv2.cvtColor(filtered_img, cv2.COLOR_BGR2RGB)
|
| 107 |
+
Image.fromarray(rgb_img).save(f"filter_{i+1}_result.jpg")
|
| 108 |
+
print(f"Saved filter_{i+1}_result.jpg")
|