# app_pure_rag.py import numpy as np import faiss import gradio as gr from langchain.text_splitter import CharacterTextSplitter from sentence_transformers import SentenceTransformer # --- Load and Prepare Data --- with open("gen_agents.txt", "r", encoding="utf-8") as f: full_text = f.read() # Split text into passages text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=512, chunk_overlap=20) docs = text_splitter.create_documents([full_text]) passages = [doc.page_content for doc in docs] # Initialize embedder and build FAISS index embedder = SentenceTransformer('all-MiniLM-L6-v2') passage_embeddings = embedder.encode(passages, convert_to_tensor=False, show_progress_bar=True) passage_embeddings = np.array(passage_embeddings).astype("float32") d = passage_embeddings.shape[1] index = faiss.IndexFlatL2(d) index.add(passage_embeddings) # --- Provided Functions --- def retrieve_passages(query, embedder, index, passages, top_k=3): """ Retrieve the top-k most relevant passages based on the query. """ query_embedding = embedder.encode([query], convert_to_tensor=False) query_embedding = np.array(query_embedding).astype('float32') distances, indices = index.search(query_embedding, top_k) retrieved = [passages[i] for i in indices[0]] return retrieved # --- Gradio App Function --- def get_pure_rag_output(query): retrieved = retrieve_passages(query, embedder, index, passages, top_k=3) rag_text = "\n".join([f"Passage {i+1}: {p}" for i, p in enumerate(retrieved)]) # Wrap text in a styled div return f"
{rag_text}
" def clear_output(): return "" # --- Custom CSS for a ChatGPT-like Dark Theme --- custom_css = """ body { background-color: #343541 !important; color: #ECECEC !important; margin: 0; padding: 0; font-family: 'Inter', sans-serif; } #container { max-width: 900px; margin: 0 auto; padding: 20px; } label { color: #ECECEC; font-weight: 600; } textarea, input { background-color: #40414F; color: #ECECEC; border: 1px solid #565869; } button { background-color: #565869; color: #ECECEC; border: none; font-weight: 600; transition: background-color 0.2s ease; } button:hover { background-color: #6e7283; } .output-box { border: 1px solid #565869; border-radius: 4px; padding: 10px; margin-top: 8px; background-color: #40414F; } """ # --- Build Gradio Interface --- with gr.Blocks(css=custom_css) as demo: with gr.Column(elem_id="container"): gr.Markdown("## Anonymous Chatbot\n### Loaded Article: Generative Agents - Interactive Simulacra of Human Behavior (Park et al. 2023)\n [https://arxiv.org/pdf/2304.03442](https://arxiv.org/pdf/2304.03442)") gr.Markdown("Enter any questions about the article above in the prompt!") query_input = gr.Textbox(label="Query", placeholder="Enter your query here...", lines=1) with gr.Column(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") output_box = gr.HTML(label="Output", elem_classes="output-box") submit_button.click(fn=get_pure_rag_output, inputs=query_input, outputs=output_box) clear_button.click(fn=clear_output, inputs=[], outputs=output_box) demo.launch()