Spaces:
Running
Running
# app_pure_rag.py | |
import numpy as np | |
import faiss | |
import gradio as gr | |
from langchain.text_splitter import CharacterTextSplitter | |
from sentence_transformers import SentenceTransformer | |
# --- Load and Prepare Data --- | |
with open("gen_agents.txt", "r", encoding="utf-8") as f: | |
full_text = f.read() | |
# Split text into passages | |
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=512, chunk_overlap=20) | |
docs = text_splitter.create_documents([full_text]) | |
passages = [doc.page_content for doc in docs] | |
# Initialize embedder and build FAISS index | |
embedder = SentenceTransformer('all-MiniLM-L6-v2') | |
passage_embeddings = embedder.encode(passages, convert_to_tensor=False, show_progress_bar=True) | |
passage_embeddings = np.array(passage_embeddings).astype("float32") | |
d = passage_embeddings.shape[1] | |
index = faiss.IndexFlatL2(d) | |
index.add(passage_embeddings) | |
# --- Provided Functions --- | |
def retrieve_passages(query, embedder, index, passages, top_k=3): | |
""" | |
Retrieve the top-k most relevant passages based on the query. | |
""" | |
query_embedding = embedder.encode([query], convert_to_tensor=False) | |
query_embedding = np.array(query_embedding).astype('float32') | |
distances, indices = index.search(query_embedding, top_k) | |
retrieved = [passages[i] for i in indices[0]] | |
return retrieved | |
# --- Gradio App Function --- | |
def get_pure_rag_output(query): | |
retrieved = retrieve_passages(query, embedder, index, passages, top_k=3) | |
rag_text = "\n".join([f"Passage {i+1}: {p}" for i, p in enumerate(retrieved)]) | |
# Wrap text in a styled div | |
return f"<div style='white-space: pre-wrap;'>{rag_text}</div>" | |
def clear_output(): | |
return "" | |
# --- Custom CSS for a ChatGPT-like Dark Theme --- | |
custom_css = """ | |
body { | |
background-color: #343541 !important; | |
color: #ECECEC !important; | |
margin: 0; | |
padding: 0; | |
font-family: 'Inter', sans-serif; | |
} | |
#container { | |
max-width: 900px; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
label { | |
color: #ECECEC; | |
font-weight: 600; | |
} | |
textarea, input { | |
background-color: #40414F; | |
color: #ECECEC; | |
border: 1px solid #565869; | |
} | |
button { | |
background-color: #565869; | |
color: #ECECEC; | |
border: none; | |
font-weight: 600; | |
transition: background-color 0.2s ease; | |
} | |
button:hover { | |
background-color: #6e7283; | |
} | |
.output-box { | |
border: 1px solid #565869; | |
border-radius: 4px; | |
padding: 10px; | |
margin-top: 8px; | |
background-color: #40414F; | |
} | |
""" | |
# --- Build Gradio Interface --- | |
with gr.Blocks(css=custom_css) as demo: | |
with gr.Column(elem_id="container"): | |
gr.Markdown("## Anonymous Chatbot\n### Loaded Article: Generative Agents - Interactive Simulacra of Human Behavior (Park et al. 2023)\n [https://arxiv.org/pdf/2304.03442](https://arxiv.org/pdf/2304.03442)") | |
gr.Markdown("Enter any questions about the article above in the prompt!") | |
query_input = gr.Textbox(label="Query", placeholder="Enter your query here...", lines=1) | |
with gr.Column(): | |
submit_button = gr.Button("Submit") | |
clear_button = gr.Button("Clear") | |
output_box = gr.HTML(label="Output", elem_classes="output-box") | |
submit_button.click(fn=get_pure_rag_output, inputs=query_input, outputs=output_box) | |
clear_button.click(fn=clear_output, inputs=[], outputs=output_box) | |
demo.launch() | |