Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,495 +1,63 @@
|
|
1 |
-
#
|
2 |
|
3 |
import subprocess
|
4 |
import sys
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
"
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
print("'Spanish-F5' no estaba instalado o hubo un error al desinstalarlo.")
|
32 |
-
|
33 |
-
# Instalar Spanish-F5 desde GitHub
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
sys.executable, "-m", "pip", "install",
|
38 |
-
"--upgrade",
|
39 |
-
"git+https://github.com/jpgallegoar/Spanish-F5.git",
|
40 |
-
"--no-cache-dir"
|
41 |
-
], check=True)
|
42 |
except subprocess.CalledProcessError as e:
|
43 |
-
print("Error al instalar
|
44 |
sys.exit(1)
|
45 |
-
|
46 |
-
# Instalar las demás dependencias
|
47 |
-
for package in packages:
|
48 |
-
try:
|
49 |
-
print(f"Instalando '{package}'...")
|
50 |
-
subprocess.run([sys.executable, "-m", "pip", "install", package], check=True)
|
51 |
-
except subprocess.CalledProcessError as e:
|
52 |
-
print(f"Error al instalar '{package}':", e)
|
53 |
-
sys.exit(1)
|
54 |
-
|
55 |
-
print("Todas las dependencias han sido instaladas correctamente.")
|
56 |
-
|
57 |
-
# Instalar dependencias antes de importar
|
58 |
-
install_packages()
|
59 |
-
|
60 |
-
# Importar las bibliotecas necesarias
|
61 |
-
import re
|
62 |
-
import tempfile
|
63 |
-
|
64 |
-
import gradio as gr
|
65 |
-
import numpy as np
|
66 |
-
import soundfile as sf
|
67 |
-
import torchaudio
|
68 |
-
from cached_path import cached_path
|
69 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
-
import torch
|
71 |
-
|
72 |
-
from f5_tts.model import DiT
|
73 |
-
from f5_tts.infer.utils_infer import (
|
74 |
-
load_vocoder,
|
75 |
-
load_model,
|
76 |
-
preprocess_ref_audio_text,
|
77 |
-
infer_process,
|
78 |
-
remove_silence_for_generated_wav,
|
79 |
-
)
|
80 |
-
from num2words import num2words
|
81 |
-
|
82 |
-
# Intentar importar 'spaces' para determinar si se está usando Hugging Face Spaces
|
83 |
-
try:
|
84 |
-
import spaces
|
85 |
-
USING_SPACES = True
|
86 |
-
except ImportError:
|
87 |
-
USING_SPACES = False
|
88 |
-
|
89 |
-
# Decorador para utilizar GPU si está disponible
|
90 |
-
def gpu_decorator(func):
|
91 |
-
if USING_SPACES:
|
92 |
-
return spaces.GPU(func)
|
93 |
-
else:
|
94 |
-
return func
|
95 |
-
|
96 |
-
# Cargar el vocoder
|
97 |
-
vocoder = load_vocoder()
|
98 |
-
|
99 |
-
# Cargar el modelo F5-TTS
|
100 |
-
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
101 |
-
F5TTS_ema_model = load_model(
|
102 |
-
DiT, F5TTS_model_cfg, str(cached_path("hf://jpgallegoar/F5-Spanish/model_1200000.safetensors"))
|
103 |
-
)
|
104 |
-
|
105 |
-
# Variables globales para el modelo de chat
|
106 |
-
chat_model_state = None
|
107 |
-
chat_tokenizer_state = None
|
108 |
-
|
109 |
-
@gpu_decorator
|
110 |
-
def generate_response(messages, model, tokenizer):
|
111 |
-
"""
|
112 |
-
Genera una respuesta utilizando el modelo de chat.
|
113 |
-
|
114 |
-
Args:
|
115 |
-
messages (list): Lista de mensajes en la conversación.
|
116 |
-
model: Modelo de lenguaje.
|
117 |
-
tokenizer: Tokenizer correspondiente al modelo.
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
str: Respuesta generada por el modelo.
|
121 |
-
"""
|
122 |
-
text = tokenizer.apply_chat_template(
|
123 |
-
messages,
|
124 |
-
tokenize=False,
|
125 |
-
add_generation_prompt=True,
|
126 |
-
)
|
127 |
-
|
128 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
129 |
-
generated_ids = model.generate(
|
130 |
-
**model_inputs,
|
131 |
-
max_new_tokens=512,
|
132 |
-
temperature=0.7,
|
133 |
-
top_p=0.95,
|
134 |
-
)
|
135 |
-
|
136 |
-
generated_ids = [
|
137 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
138 |
-
]
|
139 |
-
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
140 |
-
|
141 |
-
def traducir_numero_a_texto(texto):
|
142 |
-
"""
|
143 |
-
Convierte números en texto a su representación en palabras en español.
|
144 |
-
|
145 |
-
Args:
|
146 |
-
texto (str): Texto que contiene números.
|
147 |
-
|
148 |
-
Returns:
|
149 |
-
str: Texto con números convertidos a palabras.
|
150 |
-
"""
|
151 |
-
texto_separado = re.sub(r'([A-Za-z])(\d)', r'\1 \2', texto)
|
152 |
-
texto_separado = re.sub(r'(\d)([A-Za-z])', r'\1 \2', texto_separado)
|
153 |
-
|
154 |
-
def reemplazar_numero(match):
|
155 |
-
numero = match.group()
|
156 |
-
return num2words(int(numero), lang='es')
|
157 |
-
|
158 |
-
texto_traducido = re.sub(r'\b\d+\b', reemplazar_numero, texto_separado)
|
159 |
-
|
160 |
-
return texto_traducido
|
161 |
-
|
162 |
-
@gpu_decorator
|
163 |
-
def infer(
|
164 |
-
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
|
165 |
-
):
|
166 |
-
"""
|
167 |
-
Genera el audio sintetizado a partir del texto.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
ref_audio_orig (str): Ruta al audio de referencia.
|
171 |
-
ref_text (str): Texto de referencia.
|
172 |
-
gen_text (str): Texto para generar el audio.
|
173 |
-
model: Modelo TTS.
|
174 |
-
remove_silence (bool): Si se debe eliminar silencios.
|
175 |
-
cross_fade_duration (float): Duración del cross-fade.
|
176 |
-
speed (float): Velocidad de reproducción.
|
177 |
-
show_info: Función para mostrar información (Gradio Info).
|
178 |
-
|
179 |
-
Returns:
|
180 |
-
tuple: (sample_rate, audio_data), ruta al espectrograma.
|
181 |
-
"""
|
182 |
-
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
183 |
-
|
184 |
-
ema_model = F5TTS_ema_model
|
185 |
-
|
186 |
-
if not gen_text.startswith(" "):
|
187 |
-
gen_text = " " + gen_text
|
188 |
-
if not gen_text.endswith(". "):
|
189 |
-
gen_text += ". "
|
190 |
-
|
191 |
-
gen_text = gen_text.lower()
|
192 |
-
gen_text = traducir_numero_a_texto(gen_text)
|
193 |
-
|
194 |
-
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
195 |
-
ref_audio,
|
196 |
-
ref_text,
|
197 |
-
gen_text,
|
198 |
-
ema_model,
|
199 |
-
vocoder,
|
200 |
-
cross_fade_duration=cross_fade_duration,
|
201 |
-
speed=speed,
|
202 |
-
show_info=show_info,
|
203 |
-
progress=gr.Progress(),
|
204 |
-
)
|
205 |
-
|
206 |
-
# Eliminar silencios si está activado
|
207 |
-
if remove_silence:
|
208 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
209 |
-
sf.write(f.name, final_wave, final_sample_rate)
|
210 |
-
remove_silence_for_generated_wav(f.name)
|
211 |
-
final_wave, _ = torchaudio.load(f.name)
|
212 |
-
final_wave = final_wave.squeeze().cpu().numpy()
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
def load_chat_model():
|
217 |
"""
|
218 |
-
|
219 |
-
|
220 |
-
Returns:
|
221 |
-
tuple: (modelo, tokenizer)
|
222 |
"""
|
223 |
-
|
224 |
-
if
|
225 |
-
|
226 |
-
|
227 |
-
model_name, torch_dtype=torch.float16, device_map="auto"
|
228 |
-
)
|
229 |
-
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
230 |
-
return chat_model_state, chat_tokenizer_state
|
231 |
-
|
232 |
-
with gr.Blocks() as app_chat:
|
233 |
-
gr.Markdown(
|
234 |
-
"""
|
235 |
-
# Chat de Voz
|
236 |
-
¡Mantén una conversación con una IA usando tu voz de referencia!
|
237 |
-
1. Sube un clip de audio de referencia y opcionalmente su transcripción.
|
238 |
-
2. Carga el modelo de chat.
|
239 |
-
3. Graba tu mensaje a través de tu micrófono.
|
240 |
-
4. La IA responderá usando la voz de referencia.
|
241 |
-
"""
|
242 |
-
)
|
243 |
-
|
244 |
-
if not USING_SPACES:
|
245 |
-
load_chat_model_btn = gr.Button("Cargar Modelo de Chat", variant="primary")
|
246 |
-
|
247 |
-
chat_interface_container = gr.Column(visible=False)
|
248 |
-
|
249 |
-
@gpu_decorator
|
250 |
-
def load_chat_model_fn():
|
251 |
-
load_chat_model()
|
252 |
-
return gr.update(visible=False), gr.update(visible=True)
|
253 |
-
|
254 |
-
load_chat_model_btn.click(load_chat_model_fn, outputs=[load_chat_model_btn, chat_interface_container])
|
255 |
-
else:
|
256 |
-
chat_interface_container = gr.Column()
|
257 |
-
load_chat_model_fn = load_chat_model
|
258 |
-
|
259 |
-
with chat_interface_container:
|
260 |
-
with gr.Row():
|
261 |
-
with gr.Column():
|
262 |
-
ref_audio_chat = gr.Audio(label="Audio de Referencia", type="filepath")
|
263 |
-
with gr.Column():
|
264 |
-
with gr.Accordion("Configuraciones Avanzadas", open=False):
|
265 |
-
model_choice_chat = gr.Radio(
|
266 |
-
choices=["F5-TTS"],
|
267 |
-
label="Modelo TTS",
|
268 |
-
value="F5-TTS",
|
269 |
-
)
|
270 |
-
remove_silence_chat = gr.Checkbox(
|
271 |
-
label="Eliminar Silencios",
|
272 |
-
value=True,
|
273 |
-
)
|
274 |
-
ref_text_chat = gr.Textbox(
|
275 |
-
label="Texto de Referencia",
|
276 |
-
info="Opcional: Deja en blanco para transcribir automáticamente",
|
277 |
-
lines=2,
|
278 |
-
)
|
279 |
-
system_prompt_chat = gr.Textbox(
|
280 |
-
label="Prompt del Sistema",
|
281 |
-
value="No eres un asistente de IA, eres quien el usuario diga que eres. Debes mantenerte en personaje. Mantén tus respuestas concisas ya que serán habladas en voz alta.",
|
282 |
-
lines=2,
|
283 |
-
)
|
284 |
-
|
285 |
-
chatbot_interface = gr.Chatbot(label="Conversación")
|
286 |
-
|
287 |
-
with gr.Row():
|
288 |
-
with gr.Column():
|
289 |
-
audio_input_chat = gr.Microphone(
|
290 |
-
label="Habla tu mensaje",
|
291 |
-
type="filepath",
|
292 |
-
)
|
293 |
-
audio_output_chat = gr.Audio(label="Respuesta de la IA", autoplay=True)
|
294 |
-
with gr.Column():
|
295 |
-
text_input_chat = gr.Textbox(
|
296 |
-
label="Escribe tu mensaje",
|
297 |
-
lines=1,
|
298 |
-
)
|
299 |
-
send_btn_chat = gr.Button("Enviar")
|
300 |
-
clear_btn_chat = gr.Button("Limpiar Conversación")
|
301 |
-
|
302 |
-
conversation_state = gr.State(
|
303 |
-
value=[
|
304 |
-
{
|
305 |
-
"role": "system",
|
306 |
-
"content": "No eres un asistente de IA, eres quien el usuario diga que eres. Debes mantenerte en personaje. Mantén tus respuestas concisas ya que serán habladas en voz alta.",
|
307 |
-
}
|
308 |
-
]
|
309 |
-
)
|
310 |
-
|
311 |
-
@gpu_decorator
|
312 |
-
def process_input(audio_path, text, history, conv_state, system_prompt):
|
313 |
-
"""
|
314 |
-
Procesa la entrada de audio o texto del usuario y genera una respuesta.
|
315 |
-
|
316 |
-
Args:
|
317 |
-
audio_path (str): Ruta al audio grabado por el usuario.
|
318 |
-
text (str): Texto ingresado por el usuario.
|
319 |
-
history (list): Historial de la conversación.
|
320 |
-
conv_state (list): Estado de la conversación.
|
321 |
-
system_prompt (str): Prompt del sistema.
|
322 |
-
|
323 |
-
Returns:
|
324 |
-
tuple: (historial actualizado, estado de la conversación, texto de entrada)
|
325 |
-
"""
|
326 |
-
if not audio_path and not text.strip():
|
327 |
-
return history, conv_state, ""
|
328 |
-
|
329 |
-
if audio_path:
|
330 |
-
# Aquí podrías integrar una transcripción automática si lo deseas
|
331 |
-
# Por simplicidad, asumimos que el texto es proporcionado
|
332 |
-
pass
|
333 |
-
|
334 |
-
if not text.strip():
|
335 |
-
return history, conv_state, ""
|
336 |
-
|
337 |
-
conv_state.append({"role": "user", "content": text})
|
338 |
-
history.append((text, None))
|
339 |
-
|
340 |
-
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
341 |
-
|
342 |
-
conv_state.append({"role": "assistant", "content": response})
|
343 |
-
history[-1] = (text, response)
|
344 |
-
|
345 |
-
return history, conv_state, response
|
346 |
-
|
347 |
-
@gpu_decorator
|
348 |
-
def generate_audio_response(response, ref_audio, ref_text, model, remove_silence):
|
349 |
-
"""
|
350 |
-
Genera el audio de respuesta para la IA.
|
351 |
-
|
352 |
-
Args:
|
353 |
-
response (str): Respuesta de la IA en texto.
|
354 |
-
ref_audio (str): Ruta al audio de referencia.
|
355 |
-
ref_text (str): Texto de referencia.
|
356 |
-
model (str): Modelo TTS a utilizar.
|
357 |
-
remove_silence (bool): Si se debe eliminar silencios.
|
358 |
-
|
359 |
-
Returns:
|
360 |
-
tuple: (sample_rate, audio_data)
|
361 |
-
"""
|
362 |
-
if not response or not ref_audio:
|
363 |
-
return None
|
364 |
-
|
365 |
-
audio_result, _ = infer(
|
366 |
-
ref_audio,
|
367 |
-
ref_text,
|
368 |
-
response,
|
369 |
-
model,
|
370 |
-
remove_silence,
|
371 |
-
cross_fade_duration=0.15,
|
372 |
-
speed=1.0,
|
373 |
-
show_info=gr.Info(),
|
374 |
-
)
|
375 |
-
return audio_result
|
376 |
-
|
377 |
-
def clear_conversation_fn():
|
378 |
-
"""
|
379 |
-
Limpia la conversación.
|
380 |
-
|
381 |
-
Returns:
|
382 |
-
tuple: (historial vacío, estado de la conversación reiniciado)
|
383 |
-
"""
|
384 |
-
return [], [
|
385 |
-
{
|
386 |
-
"role": "system",
|
387 |
-
"content": "No eres un asistente de IA, eres quien el usuario diga que eres. Debes mantenerte en personaje. Mantén tus respuestas concisas ya que serán habladas en voz alta.",
|
388 |
-
}
|
389 |
-
]
|
390 |
-
|
391 |
-
def update_system_prompt_fn(new_prompt):
|
392 |
-
"""
|
393 |
-
Actualiza el prompt del sistema y reinicia la conversación.
|
394 |
-
|
395 |
-
Args:
|
396 |
-
new_prompt (str): Nuevo prompt del sistema.
|
397 |
-
|
398 |
-
Returns:
|
399 |
-
tuple: (historial vacío, estado de la conversación actualizado)
|
400 |
-
"""
|
401 |
-
new_conv_state = [{"role": "system", "content": new_prompt}]
|
402 |
-
return [], new_conv_state
|
403 |
-
|
404 |
-
# Manejar la entrada de audio
|
405 |
-
audio_input_chat.stop_recording(
|
406 |
-
process_input,
|
407 |
-
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state, system_prompt_chat],
|
408 |
-
outputs=[chatbot_interface, conversation_state, text_input_chat],
|
409 |
-
).then(
|
410 |
-
generate_audio_response,
|
411 |
-
inputs=[text_input_chat, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
412 |
-
outputs=[audio_output_chat],
|
413 |
-
).then(
|
414 |
-
lambda: None,
|
415 |
-
None,
|
416 |
-
audio_input_chat,
|
417 |
-
)
|
418 |
-
|
419 |
-
# Manejar la entrada de texto
|
420 |
-
text_input_chat.submit(
|
421 |
-
process_input,
|
422 |
-
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state, system_prompt_chat],
|
423 |
-
outputs=[chatbot_interface, conversation_state, text_input_chat],
|
424 |
-
).then(
|
425 |
-
generate_audio_response,
|
426 |
-
inputs=[text_input_chat, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
427 |
-
outputs=[audio_output_chat],
|
428 |
-
).then(
|
429 |
-
lambda: None,
|
430 |
-
None,
|
431 |
-
text_input_chat,
|
432 |
-
)
|
433 |
-
|
434 |
-
# Manejar el botón de enviar
|
435 |
-
send_btn_chat.click(
|
436 |
-
process_input,
|
437 |
-
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state, system_prompt_chat],
|
438 |
-
outputs=[chatbot_interface, conversation_state, text_input_chat],
|
439 |
-
).then(
|
440 |
-
generate_audio_response,
|
441 |
-
inputs=[text_input_chat, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
442 |
-
outputs=[audio_output_chat],
|
443 |
-
).then(
|
444 |
-
lambda: None,
|
445 |
-
None,
|
446 |
-
text_input_chat,
|
447 |
-
)
|
448 |
-
|
449 |
-
# Manejar el botón de limpiar conversación
|
450 |
-
clear_btn_chat.click(
|
451 |
-
clear_conversation_fn,
|
452 |
-
outputs=[chatbot_interface, conversation_state],
|
453 |
-
)
|
454 |
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
)
|
|
|
461 |
|
462 |
def main():
|
463 |
"""
|
464 |
-
Función principal
|
465 |
-
Maneja si se está ejecutando en Hugging Face Spaces o localmente.
|
466 |
"""
|
467 |
-
|
468 |
-
|
469 |
-
@click.command()
|
470 |
-
@click.option("--port", "-p", default=None, type=int, help="Puerto para ejecutar la aplicación")
|
471 |
-
@click.option("--host", "-H", default=None, help="Host para ejecutar la aplicación")
|
472 |
-
@click.option(
|
473 |
-
"--share",
|
474 |
-
"-s",
|
475 |
-
default=False,
|
476 |
-
is_flag=True,
|
477 |
-
help="Compartir la aplicación a través de un enlace compartido de Gradio",
|
478 |
-
)
|
479 |
-
@click.option("--api", "-a", default=True, is_flag=True, help="Permitir acceso a la API")
|
480 |
-
def run_app(port, host, share, api):
|
481 |
-
"""
|
482 |
-
Ejecuta la aplicación Gradio con las opciones proporcionadas.
|
483 |
-
"""
|
484 |
-
print("Iniciando la aplicación de Chat AI...")
|
485 |
-
app_chat.queue(api_open=api).launch(
|
486 |
-
server_name=host,
|
487 |
-
server_port=port,
|
488 |
-
share=share,
|
489 |
-
show_api=api
|
490 |
-
)
|
491 |
-
|
492 |
-
run_app()
|
493 |
|
494 |
if __name__ == "__main__":
|
495 |
main()
|
|
|
1 |
+
# app.py
|
2 |
|
3 |
import subprocess
|
4 |
import sys
|
5 |
+
import os
|
6 |
+
|
7 |
+
def install_requirements(requirements_file="requirements.txt"):
|
8 |
+
"""
|
9 |
+
Instala las dependencias listadas en el archivo requirements.txt.
|
10 |
+
Si el archivo no existe, crea uno con las dependencias necesarias.
|
11 |
+
"""
|
12 |
+
# Verificar si el archivo requirements.txt existe
|
13 |
+
if not os.path.isfile(requirements_file):
|
14 |
+
# Crear el archivo con las dependencias necesarias
|
15 |
+
with open(requirements_file, "w") as f:
|
16 |
+
f.write("""gradio>=3.0
|
17 |
+
numpy>=1.21.0
|
18 |
+
soundfile>=0.10.3
|
19 |
+
torchaudio>=0.10.0
|
20 |
+
cached_path>=0.1.0
|
21 |
+
transformers>=4.0.0
|
22 |
+
torch>=1.10.0
|
23 |
+
num2words>=0.5.10
|
24 |
+
click>=8.0.0
|
25 |
+
git+https://github.com/jpgallegoar/Spanish-F5.git
|
26 |
+
""")
|
27 |
+
print(f"Creado archivo {requirements_file} con las dependencias necesarias.")
|
28 |
+
|
29 |
+
# Instalar las dependencias usando pip
|
30 |
+
print("Instalando dependencias desde requirements.txt...")
|
|
|
|
|
|
|
31 |
try:
|
32 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", requirements_file])
|
33 |
+
print("Dependencias instaladas correctamente.")
|
|
|
|
|
|
|
|
|
|
|
34 |
except subprocess.CalledProcessError as e:
|
35 |
+
print(f"Error al instalar las dependencias: {e}")
|
36 |
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def run_chat_ai():
|
|
|
|
|
39 |
"""
|
40 |
+
Ejecuta el script chat_ai.py.
|
|
|
|
|
|
|
41 |
"""
|
42 |
+
# Verificar si chat_ai.py existe
|
43 |
+
if not os.path.isfile("chat_ai.py"):
|
44 |
+
print("Error: 'chat_ai.py' no se encuentra en el directorio actual.")
|
45 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Ejecutar chat_ai.py
|
48 |
+
print("Ejecutando 'chat_ai.py'...")
|
49 |
+
try:
|
50 |
+
subprocess.check_call([sys.executable, "chat_ai.py"])
|
51 |
+
except subprocess.CalledProcessError as e:
|
52 |
+
print(f"Error al ejecutar 'chat_ai.py': {e}")
|
53 |
+
sys.exit(1)
|
54 |
|
55 |
def main():
|
56 |
"""
|
57 |
+
Función principal que instala las dependencias y ejecuta chat_ai.py.
|
|
|
58 |
"""
|
59 |
+
install_requirements()
|
60 |
+
run_chat_ai()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
main()
|