Spaces:
Paused
Paused
Update chat_ai.py
Browse files- chat_ai.py +131 -59
chat_ai.py
CHANGED
@@ -1,10 +1,30 @@
|
|
1 |
-
import
|
2 |
import tempfile
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
import torchaudio
|
5 |
import soundfile as sf
|
6 |
-
|
7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from f5_tts.infer.utils_infer import (
|
9 |
load_vocoder,
|
10 |
load_model,
|
@@ -13,18 +33,43 @@ from f5_tts.infer.utils_infer import (
|
|
13 |
remove_silence_for_generated_wav,
|
14 |
save_spectrogram,
|
15 |
)
|
16 |
-
from num2words import num2words
|
17 |
-
import re
|
18 |
|
19 |
-
# Cargar vocoder y modelo
|
20 |
vocoder = load_vocoder()
|
|
|
|
|
21 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
22 |
F5TTS_ema_model = load_model(
|
23 |
-
DiT, F5TTS_model_cfg, "hf://jpgallegoar/F5-Spanish/model_1200000.safetensors"
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def traducir_numero_a_texto(texto):
|
27 |
-
"""Convierte n煤meros a palabras en el texto."""
|
28 |
texto_separado = re.sub(r'([A-Za-z])(\d)', r'\1 \2', texto)
|
29 |
texto_separado = re.sub(r'(\d)([A-Za-z])', r'\1 \2', texto_separado)
|
30 |
|
@@ -36,24 +81,36 @@ def traducir_numero_a_texto(texto):
|
|
36 |
|
37 |
return texto_traducido
|
38 |
|
|
|
|
|
39 |
def infer(
|
40 |
-
ref_audio_orig, ref_text, gen_text, remove_silence
|
41 |
):
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
gen_text =
|
|
|
46 |
|
47 |
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
48 |
ref_audio,
|
49 |
ref_text,
|
50 |
gen_text,
|
51 |
-
|
52 |
vocoder,
|
53 |
cross_fade_duration=cross_fade_duration,
|
54 |
speed=speed,
|
|
|
|
|
55 |
)
|
56 |
|
|
|
57 |
if remove_silence:
|
58 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
59 |
sf.write(f.name, final_wave, final_sample_rate)
|
@@ -68,57 +125,72 @@ def infer(
|
|
68 |
|
69 |
return (final_sample_rate, final_wave), spectrogram_path
|
70 |
|
71 |
-
def tts_pipeline(ref_audio, ref_text, gen_text, remove_silence, speed):
|
72 |
-
"""Pipeline para la interfaz de Gradio."""
|
73 |
-
if not ref_audio:
|
74 |
-
return None, "Por favor sube un audio de referencia."
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_audio:
|
81 |
-
sf.write(tmp_audio.name, audio, sample_rate)
|
82 |
-
return tmp_audio.name, spectrogram_path
|
83 |
-
except Exception as e:
|
84 |
-
return None, f"Error al generar audio: {str(e)}"
|
85 |
-
|
86 |
-
# Crear interfaz con Gradio
|
87 |
-
with gr.Blocks() as demo:
|
88 |
-
gr.Markdown("""# Conversi贸n de Texto a Voz (TTS) en Espa帽ol
|
89 |
-
|
90 |
-
Convierte texto en audio en espa帽ol usando un modelo de TTS. Proporciona un audio de referencia y el texto a convertir.
|
91 |
-
|
92 |
-
**Instrucciones:**
|
93 |
-
1. Sube un audio de referencia (formato WAV o MP3, de 11 a 14 segundos).
|
94 |
-
2. Opcionalmente, ingresa el texto correspondiente al audio de referencia.
|
95 |
-
3. Escribe el texto que deseas convertir a voz.
|
96 |
-
4. Haz clic en "Generar Audio".
|
97 |
-
|
98 |
-
*Nota: Los n煤meros en el texto ser谩n convertidos autom谩ticamente a palabras.*
|
99 |
-
""")
|
100 |
-
|
101 |
-
with gr.Row():
|
102 |
-
ref_audio = gr.Audio(label="Audio de Referencia", type="filepath")
|
103 |
-
ref_text = gr.Textbox(label="Texto de Referencia (Opcional)", placeholder="Transcripci贸n del audio de referencia")
|
104 |
|
105 |
-
|
|
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
generate_btn = gr.Button("Generar Audio")
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
inputs=[ref_audio, ref_text, gen_text, remove_silence, speed],
|
120 |
-
outputs=[audio_output, spectrogram_output],
|
121 |
)
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
|
124 |
-
|
|
|
1 |
+
import re
|
2 |
import tempfile
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
import numpy as np
|
|
|
6 |
import soundfile as sf
|
7 |
+
import torchaudio
|
8 |
+
from cached_path import cached_path
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
+
from num2words import num2words
|
11 |
+
|
12 |
+
try:
|
13 |
+
import spaces
|
14 |
+
|
15 |
+
USING_SPACES = True
|
16 |
+
except ImportError:
|
17 |
+
USING_SPACES = False
|
18 |
+
|
19 |
+
|
20 |
+
def gpu_decorator(func):
|
21 |
+
if USING_SPACES:
|
22 |
+
return spaces.GPU(func)
|
23 |
+
else:
|
24 |
+
return func
|
25 |
+
|
26 |
+
|
27 |
+
from f5_tts.model import DiT, UNetT
|
28 |
from f5_tts.infer.utils_infer import (
|
29 |
load_vocoder,
|
30 |
load_model,
|
|
|
33 |
remove_silence_for_generated_wav,
|
34 |
save_spectrogram,
|
35 |
)
|
|
|
|
|
36 |
|
|
|
37 |
vocoder = load_vocoder()
|
38 |
+
|
39 |
+
# Cargar modelos
|
40 |
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
41 |
F5TTS_ema_model = load_model(
|
42 |
+
DiT, F5TTS_model_cfg, str(cached_path("hf://jpgallegoar/F5-Spanish/model_1200000.safetensors"))
|
43 |
)
|
44 |
|
45 |
+
chat_model_state = None
|
46 |
+
chat_tokenizer_state = None
|
47 |
+
|
48 |
+
|
49 |
+
@gpu_decorator
|
50 |
+
def generate_response(messages, model, tokenizer):
|
51 |
+
"""Generar respuesta usando Qwen."""
|
52 |
+
text = tokenizer.apply_chat_template(
|
53 |
+
messages,
|
54 |
+
tokenize=False,
|
55 |
+
add_generation_prompt=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
59 |
+
generated_ids = model.generate(
|
60 |
+
**model_inputs,
|
61 |
+
max_new_tokens=512,
|
62 |
+
temperature=0.7,
|
63 |
+
top_p=0.95,
|
64 |
+
)
|
65 |
+
|
66 |
+
generated_ids = [
|
67 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
68 |
+
]
|
69 |
+
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
70 |
+
|
71 |
+
|
72 |
def traducir_numero_a_texto(texto):
|
|
|
73 |
texto_separado = re.sub(r'([A-Za-z])(\d)', r'\1 \2', texto)
|
74 |
texto_separado = re.sub(r'(\d)([A-Za-z])', r'\1 \2', texto_separado)
|
75 |
|
|
|
81 |
|
82 |
return texto_traducido
|
83 |
|
84 |
+
|
85 |
+
@gpu_decorator
|
86 |
def infer(
|
87 |
+
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
|
88 |
):
|
89 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
90 |
+
|
91 |
+
ema_model = F5TTS_ema_model
|
92 |
+
|
93 |
+
if not gen_text.startswith(" "):
|
94 |
+
gen_text = " " + gen_text
|
95 |
+
if not gen_text.endswith(". "):
|
96 |
+
gen_text += ". "
|
97 |
|
98 |
+
gen_text = gen_text.lower()
|
99 |
+
gen_text = traducir_numero_a_texto(gen_text)
|
100 |
|
101 |
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
102 |
ref_audio,
|
103 |
ref_text,
|
104 |
gen_text,
|
105 |
+
ema_model,
|
106 |
vocoder,
|
107 |
cross_fade_duration=cross_fade_duration,
|
108 |
speed=speed,
|
109 |
+
show_info=show_info,
|
110 |
+
progress=gr.Progress(),
|
111 |
)
|
112 |
|
113 |
+
# Remover silencios
|
114 |
if remove_silence:
|
115 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
116 |
sf.write(f.name, final_wave, final_sample_rate)
|
|
|
125 |
|
126 |
return (final_sample_rate, final_wave), spectrogram_path
|
127 |
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
with gr.Blocks() as app_tts:
|
130 |
+
gr.Markdown("# TTS por Lotes")
|
131 |
+
ref_audio_input = gr.Audio(label="Audio de Referencia", type="filepath")
|
132 |
+
gen_text_input = gr.Textbox(label="Texto para Generar", lines=10)
|
133 |
+
model_choice = gr.Radio(choices=["F5-TTS"], label="Seleccionar Modelo TTS", value="F5-TTS")
|
134 |
+
generate_btn = gr.Button("Sintetizar", variant="primary")
|
135 |
+
with gr.Accordion("Configuraciones Avanzadas", open=False):
|
136 |
+
ref_text_input = gr.Textbox(
|
137 |
+
label="Texto de Referencia",
|
138 |
+
info="Deja en blanco para transcribir autom谩ticamente el audio de referencia. Si ingresas texto, sobrescribir谩 la transcripci贸n autom谩tica.",
|
139 |
+
lines=2,
|
140 |
+
)
|
141 |
+
remove_silence = gr.Checkbox(
|
142 |
+
label="Eliminar Silencios",
|
143 |
+
info="El modelo tiende a producir silencios, especialmente en audios m谩s largos. Podemos eliminar manualmente los silencios si es necesario. Ten en cuenta que esta es una caracter铆stica experimental y puede producir resultados extra帽os. Esto tambi茅n aumentar谩 el tiempo de generaci贸n.",
|
144 |
+
value=False,
|
145 |
+
)
|
146 |
+
speed_slider = gr.Slider(
|
147 |
+
label="Velocidad",
|
148 |
+
minimum=0.3,
|
149 |
+
maximum=2.0,
|
150 |
+
value=1.0,
|
151 |
+
step=0.1,
|
152 |
+
info="Ajusta la velocidad del audio.",
|
153 |
+
)
|
154 |
+
cross_fade_duration_slider = gr.Slider(
|
155 |
+
label="Duraci贸n del Cross-Fade (s)",
|
156 |
+
minimum=0.0,
|
157 |
+
maximum=1.0,
|
158 |
+
value=0.15,
|
159 |
+
step=0.01,
|
160 |
+
info="Establece la duraci贸n del cross-fade entre clips de audio.",
|
161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
audio_output = gr.Audio(label="Audio Sintetizado")
|
164 |
+
spectrogram_output = gr.Image(label="Espectrograma")
|
165 |
|
166 |
+
generate_btn.click(
|
167 |
+
infer,
|
168 |
+
inputs=[
|
169 |
+
ref_audio_input,
|
170 |
+
ref_text_input,
|
171 |
+
gen_text_input,
|
172 |
+
model_choice,
|
173 |
+
remove_silence,
|
174 |
+
cross_fade_duration_slider,
|
175 |
+
speed_slider,
|
176 |
+
],
|
177 |
+
outputs=[audio_output, spectrogram_output],
|
178 |
+
)
|
179 |
|
|
|
180 |
|
181 |
+
with gr.Blocks() as app:
|
182 |
+
gr.Markdown(
|
183 |
+
"""
|
184 |
+
# Spanish-F5
|
185 |
|
186 |
+
Esta es una interfaz web para F5 TTS, con un finetuning para poder hablar en castellano.
|
187 |
+
"""
|
|
|
|
|
188 |
)
|
189 |
+
gr.TabbedInterface(
|
190 |
+
[app_tts],
|
191 |
+
["TTS"],
|
192 |
+
)
|
193 |
+
|
194 |
|
195 |
+
if __name__ == "__main__":
|
196 |
+
app.queue().launch()
|