alex-abb's picture
Update app.py
21a1796 verified
raw
history blame
2.3 kB
import os
import requests
from bs4 import BeautifulSoup
import gradio as gr
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
you are going to analyse the prompt that i'll give to you and tell me if they are either talking about "chat bot", "AI dev",
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
})
if isinstance(output, list) and len(output) > 0:
response = output[0].get('generated_text', '').strip().lower()
if "chat bot" in response:
return "chat bot"
elif "ai dev" in response:
return "AI dev"
else:
return "autre"
def scrape_huggingface_posts(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# Ajustez ce sélecteur selon la structure réelle de la page
posts = soup.find_all('div', class_='space-y-3 pl-7')
extracted_posts = []
for post in posts:
# Extrayez les informations pertinentes de chaque post
title = post.find('h2', class_='post-title').text.strip()
content = post.find('div', class_='post-content').text.strip()
author = post.find('span', class_='post-author').text.strip()
extracted_posts.append({
'title': title,
'content': content,
'author': author
})
return extracted_posts
# Utilisation des fonctions
url = "https://huggingface.co/posts"
all_posts = scrape_huggingface_posts(url)
# Analyse de chaque post
for post in all_posts:
category = analyze_sentiment(post['content'])
print(f"Post titre: {post['title']}")
print(f"Auteur: {post['author']}")
print(f"Catégorie: {category}")
print("---")
# Interface Gradio (si vous voulez la garder)
demo = gr.Interface(
fn=analyze_sentiment,
inputs="text",
outputs="text"
)
demo.launch()