Spaces:
Paused
Paused
alessandro trinca tornidor
[refactor] prepare packaging moving all the modules under 'lisa_on_cuda' (renamed from 'model')
60fa201
| import json | |
| import os | |
| import random | |
| import cv2 | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import CLIPImageProcessor | |
| from lisa_on_cuda.llava import conversation as conversation_lib | |
| from lisa_on_cuda.segment_anything.utils.transforms import ResizeLongestSide | |
| from .utils import DEFAULT_IMAGE_TOKEN | |
| def preprocess_multimodal(source, mm_use_im_start_end): | |
| for sentence in source: | |
| if DEFAULT_IMAGE_TOKEN in sentence["value"]: | |
| sentence["value"] = ( | |
| sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() | |
| ) | |
| sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] | |
| sentence["value"] = sentence["value"].strip() | |
| if "mmtag" in conversation_lib.default_conversation.version: | |
| sentence["value"] = sentence["value"].replace( | |
| DEFAULT_IMAGE_TOKEN, "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>" | |
| ) | |
| return source | |
| class VQADataset(torch.utils.data.Dataset): | |
| pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
| pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
| img_size = 1024 | |
| ignore_label = 255 | |
| def __init__( | |
| self, | |
| base_image_dir, | |
| tokenizer, | |
| vision_tower, | |
| samples_per_epoch=500 * 8 * 2 * 10, | |
| precision: str = "fp32", | |
| image_size: int = 224, | |
| num_classes_per_sample: int = 3, | |
| exclude_val=False, | |
| vqa_data="llava_instruct_150k", | |
| ): | |
| self.exclude_val = exclude_val | |
| self.samples_per_epoch = samples_per_epoch | |
| self.num_classes_per_sample = num_classes_per_sample | |
| self.base_image_dir = base_image_dir | |
| self.image_size = image_size | |
| self.tokenizer = tokenizer | |
| self.precision = precision | |
| self.transform = ResizeLongestSide(image_size) | |
| self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
| DATA_DIR = os.path.join(base_image_dir, "llava_dataset") | |
| self.vqa_image_root = os.path.join(base_image_dir, "coco/train2017") | |
| with open(os.path.join(DATA_DIR, "{}.json".format(vqa_data))) as f: | |
| vqa_data = json.load(f) | |
| self.vqa_data = vqa_data | |
| print("vqa_data: ", len(self.vqa_data)) | |
| def __len__(self): | |
| return self.samples_per_epoch | |
| def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
| """Normalize pixel values and pad to a square input.""" | |
| # Normalize colors | |
| x = (x - self.pixel_mean) / self.pixel_std | |
| # Pad | |
| h, w = x.shape[-2:] | |
| padh = self.img_size - h | |
| padw = self.img_size - w | |
| x = F.pad(x, (0, padw, 0, padh)) | |
| return x | |
| def __getitem__(self, idx): | |
| idx = random.randint(0, len(self.vqa_data) - 1) | |
| item = self.vqa_data[idx] | |
| image_path = os.path.join(self.vqa_image_root, item["image"]) | |
| image = cv2.imread(image_path) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| ori_size = image.shape[:2] | |
| image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[ | |
| "pixel_values" | |
| ][ | |
| 0 | |
| ] # preprocess image for clip | |
| image = self.transform.apply_image(image) # preprocess image for sam | |
| resize = image.shape[:2] | |
| conv = conversation_lib.default_conversation.copy() | |
| source = item["conversations"] | |
| source = preprocess_multimodal( | |
| source, | |
| mm_use_im_start_end=conv.sep_style == conversation_lib.SeparatorStyle.TWO, | |
| ) | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| conversations = [] | |
| if roles[source[0]["from"]] != conv.roles[0]: | |
| # Skip the first one if it is not from human | |
| source = source[1:] | |
| conv.messages = [] | |
| for j, sentence in enumerate(source): | |
| role = roles[sentence["from"]] | |
| assert role == conv.roles[j % 2], f"{i}" | |
| conv.append_message(role, sentence["value"]) | |
| conversations.append(conv.get_prompt()) | |
| questions = conversations | |
| sampled_classes = conversations | |
| image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
| masks = torch.rand(0, *ori_size) | |
| label = torch.ones(ori_size) * self.ignore_label | |
| return ( | |
| image_path, | |
| image, | |
| image_clip, | |
| conversations, | |
| masks, | |
| label, | |
| resize, | |
| questions, | |
| sampled_classes, | |
| ) | |