Spaces:
Paused
Paused
| import glob | |
| import json | |
| import os | |
| import random | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import CLIPImageProcessor | |
| from model.llava import conversation as conversation_lib | |
| from model.segment_anything.utils.transforms import ResizeLongestSide | |
| from .data_processing import get_mask_from_json | |
| from .utils import (ANSWER_LIST, DEFAULT_IMAGE_TOKEN, | |
| EXPLANATORY_QUESTION_LIST, LONG_QUESTION_LIST, | |
| SHORT_QUESTION_LIST) | |
| class ReasonSegDataset(torch.utils.data.Dataset): | |
| pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) | |
| pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) | |
| img_size = 1024 | |
| ignore_label = 255 | |
| def __init__( | |
| self, | |
| base_image_dir, | |
| tokenizer, | |
| vision_tower, | |
| samples_per_epoch=500 * 8 * 2 * 10, | |
| precision: str = "fp32", | |
| image_size: int = 224, | |
| num_classes_per_sample: int = 3, | |
| exclude_val=False, | |
| reason_seg_data="ReasonSeg|train", | |
| explanatory=0.1, | |
| ): | |
| self.exclude_val = exclude_val | |
| self.reason_seg_data = reason_seg_data | |
| self.samples_per_epoch = samples_per_epoch | |
| self.explanatory = explanatory | |
| self.num_classes_per_sample = num_classes_per_sample | |
| self.base_image_dir = base_image_dir | |
| self.image_size = image_size | |
| self.tokenizer = tokenizer | |
| self.precision = precision | |
| self.transform = ResizeLongestSide(image_size) | |
| self.clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
| self.short_question_list = SHORT_QUESTION_LIST | |
| self.long_question_list = LONG_QUESTION_LIST | |
| self.answer_list = ANSWER_LIST | |
| reason_seg_data, splits = reason_seg_data.split("|") | |
| splits = splits.split("_") | |
| images = [] | |
| for split in splits: | |
| images_split = glob.glob( | |
| os.path.join( | |
| base_image_dir, "reason_seg", reason_seg_data, split, "*.jpg" | |
| ) | |
| ) | |
| images.extend(images_split) | |
| jsons = [path.replace(".jpg", ".json") for path in images] | |
| self.reason_seg_data = (images, jsons) | |
| print("number of reason_seg samples: ", len(images)) | |
| if explanatory != -1: | |
| self.explanatory_question_list = EXPLANATORY_QUESTION_LIST | |
| self.img_to_explanation = {} | |
| with open( | |
| os.path.join( | |
| base_image_dir, | |
| "reason_seg", | |
| reason_seg_data, | |
| "explanatory", | |
| "train.json", | |
| ) | |
| ) as f: | |
| items = json.load(f) | |
| for item in items: | |
| img_name = item["image"] | |
| self.img_to_explanation[img_name] = { | |
| "query": item["query"], | |
| "outputs": item["outputs"], | |
| } | |
| print("len(self.img_to_explanation): ", len(self.img_to_explanation)) | |
| def __len__(self): | |
| return self.samples_per_epoch | |
| def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
| """Normalize pixel values and pad to a square input.""" | |
| # Normalize colors | |
| x = (x - self.pixel_mean) / self.pixel_std | |
| # Pad | |
| h, w = x.shape[-2:] | |
| padh = self.img_size - h | |
| padw = self.img_size - w | |
| x = F.pad(x, (0, padw, 0, padh)) | |
| return x | |
| def __getitem__(self, idx): | |
| images, jsons = self.reason_seg_data | |
| idx = random.randint(0, len(images) - 1) | |
| image_path = images[idx] | |
| json_path = jsons[idx] | |
| image = cv2.imread(image_path) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| ori_size = image.shape[:2] | |
| # preprocess image for clip | |
| image_clip = self.clip_image_processor.preprocess(image, return_tensors="pt")[ | |
| "pixel_values" | |
| ][0] | |
| mask, sents, is_sentence = get_mask_from_json(json_path, image) | |
| if len(sents) >= self.num_classes_per_sample: | |
| sampled_inds = np.random.choice( | |
| list(range(len(sents))), size=self.num_classes_per_sample, replace=False | |
| ) | |
| else: | |
| sampled_inds = list(range(len(sents))) | |
| sampled_sents = np.vectorize(sents.__getitem__)(sampled_inds).tolist() | |
| sampled_masks = [ | |
| (mask == 1).astype(np.float32) for _ in range(len(sampled_inds)) | |
| ] | |
| image = self.transform.apply_image(image) # preprocess image for sam | |
| resize = image.shape[:2] | |
| image_name = image_path.split("/")[-1] | |
| if self.explanatory != -1 and image_name in self.img_to_explanation: | |
| if random.random() < self.explanatory: | |
| choice = 2 | |
| else: | |
| choice = random.randint(0, 1) | |
| questions = [] | |
| answers = [] | |
| for text in sampled_sents: | |
| if is_sentence: | |
| question_template = random.choice(self.long_question_list) | |
| questions.append(question_template.format(sent=text)) | |
| else: | |
| question_template = random.choice(self.short_question_list) | |
| questions.append(question_template.format(class_name=text.lower())) | |
| # add explanation if applicable | |
| img_name = image_path.split("/")[-1] | |
| if self.explanatory != -1 and img_name in self.img_to_explanation: | |
| if choice == 0: # [SEG] token | |
| answers.append(random.choice(self.answer_list)) | |
| elif choice == 1: # [SEG] token + text answer | |
| image_name = image_path.split("/")[-1] | |
| answer = self.img_to_explanation[image_name]["outputs"] | |
| answer = random.choice(self.answer_list) + " {}".format(answer) | |
| questions[-1] = ( | |
| DEFAULT_IMAGE_TOKEN | |
| + "\n" | |
| + text | |
| + " {}".format(random.choice(self.explanatory_question_list)) | |
| ) | |
| answers.append(answer) | |
| elif choice == 2: # vanilla text answer | |
| image_name = image_path.split("/")[-1] | |
| answer = self.img_to_explanation[image_name]["outputs"] | |
| questions[-1] = DEFAULT_IMAGE_TOKEN + "\n" + text | |
| answers.append(answer) | |
| else: | |
| raise ValueError("Not implemented yet.") | |
| else: | |
| answers.append(random.choice(self.answer_list)) | |
| conversations = [] | |
| conv = conversation_lib.default_conversation.copy() | |
| roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
| i = 0 | |
| while i < len(questions): | |
| conv.messages = [] | |
| conv.append_message(conv.roles[0], questions[i]) | |
| conv.append_message(conv.roles[1], answers[i]) | |
| conversations.append(conv.get_prompt()) | |
| i += 1 | |
| image = self.preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous()) | |
| image_name = image_path.split("/")[-1] | |
| if ( | |
| self.explanatory != -1 | |
| and image_name in self.img_to_explanation | |
| and choice == 2 | |
| ): | |
| masks = torch.rand(0, *ori_size) | |
| label = torch.ones(ori_size) * self.ignore_label | |
| else: | |
| masks = np.stack(sampled_masks, axis=0) | |
| masks = torch.from_numpy(masks) | |
| label = torch.ones(masks.shape[1], masks.shape[2]) * self.ignore_label | |
| return ( | |
| image_path, | |
| image, | |
| image_clip, | |
| conversations, | |
| masks, | |
| label, | |
| resize, | |
| questions, | |
| sampled_sents, | |
| ) | |