Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,750 Bytes
574042d 4a553ac 574042d 4a553ac 574042d 4a553ac 574042d 4a553ac 574042d 4a553ac 574042d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import os
import gradio as gr
import numpy as np
from enum import Enum
import db_examples
import cv2
from demo_utils1 import *
from misc_utils.train_utils import unit_test_create_model
from misc_utils.image_utils import save_tensor_to_gif, save_tensor_to_images
import os
from PIL import Image
import torch
import torchvision
from torchvision import transforms
from einops import rearrange
import imageio
import time
from torchvision.transforms import functional as F
from torch.hub import download_url_to_file
import os
# 推理设置
from pl_trainer.inference.inference import InferenceIP2PVideo
from tqdm import tqdm
# if not os.path.exists(filename):
# original_path = os.getcwd()
# base_path = './models'
# os.makedirs(base_path, exist_ok=True)
# # 直接在代码中写入 Token(注意安全风险)
# GIT_TOKEN = "955b8ea91095840b76fe38b90a088c200d4c813c"
# repo_url = f"https://YeFang:{GIT_TOKEN}@code.openxlab.org.cn/YeFang/RIV_models.git"
# try:
# if os.system(f'git clone {repo_url} {base_path}') != 0:
# raise RuntimeError("Git 克隆失败")
# os.chdir(base_path)
# if os.system('git lfs pull') != 0:
# raise RuntimeError("Git LFS 拉取失败")
# finally:
# os.chdir(original_path)
def tensor_to_pil_image(x):
"""
将 4D PyTorch 张量转换为 PIL 图像。
"""
x = x.float() # 确保张量类型为 float
grid_img = torchvision.utils.make_grid(x, nrow=4).permute(1, 2, 0).detach().cpu().numpy()
grid_img = (grid_img * 255).clip(0, 255).astype("uint8") # 将 [0, 1] 范围转换为 [0, 255]
return Image.fromarray(grid_img)
def frame_to_batch(x):
"""
将帧维度转换为批次维度。
"""
return rearrange(x, 'b f c h w -> (b f) c h w')
def clip_image(x, min=0., max=1.):
"""
将图像张量裁剪到指定的最小和最大值。
"""
return torch.clamp(x, min=min, max=max)
def unnormalize(x):
"""
将张量范围从 [-1, 1] 转换到 [0, 1]。
"""
return (x + 1) / 2
# 读取图像文件
def read_images_from_directory(directory, num_frames=16):
images = []
for i in range(num_frames):
img_path = os.path.join(directory, f'{i:04d}.png')
img = imageio.imread(img_path)
images.append(torch.tensor(img).permute(2, 0, 1)) # Convert to Tensor (C, H, W)
return images
def load_and_process_images(folder_path):
"""
读取文件夹中的所有图片,将它们转换为 [-1, 1] 范围的张量并返回一个 4D 张量。
"""
processed_images = []
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2 - 1) # 将 [0, 1] 转换为 [-1, 1]
])
for filename in sorted(os.listdir(folder_path)):
if filename.endswith(".png"):
img_path = os.path.join(folder_path, filename)
image = Image.open(img_path).convert("RGB")
processed_image = transform(image)
processed_images.append(processed_image)
return torch.stack(processed_images) # 返回 4D 张量
def load_and_process_video(video_path, num_frames=16, crop_size=512):
"""
读取视频文件中的前 num_frames 帧,将每一帧转换为 [-1, 1] 范围的张量,
并进行中心裁剪至 crop_size x crop_size,返回一个 4D 张量。
"""
processed_frames = []
transform = transforms.Compose([
transforms.CenterCrop(crop_size), # 中心裁剪
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2 - 1) # 将 [0, 1] 转换为 [-1, 1]
])
# 使用 OpenCV 读取视频
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"无法打开视频文件: {video_path}")
frame_count = 0
while frame_count < num_frames:
ret, frame = cap.read()
if not ret:
break # 视频帧读取完毕或视频帧不足
# 转换为 RGB 格式
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
# 应用转换
processed_frame = transform(image)
processed_frames.append(processed_frame)
frame_count += 1
cap.release() # 释放视频资源
if len(processed_frames) < num_frames:
raise ValueError(f"视频帧不足 {num_frames} 帧,仅找到 {len(processed_frames)} 帧。")
return torch.stack(processed_frames) # 返回 4D 张量 (帧数, 通道数, 高度, 宽度)
def clear_cache(output_path):
if os.path.exists(output_path):
os.remove(output_path)
return None
#! 加载模型
# 配置路径和加载模型
config_path = 'configs/instruct_v2v_ic_gradio.yaml'
diffusion_model = unit_test_create_model(config_path)
diffusion_model = diffusion_model.to('cuda')
# 加载模型检查点
# ckpt_path = 'models/relvid_mm_sd15_fbc_unet.pth' #! change
# ckpt_path = 'tmp/pytorch_model.bin'
# 下载文件
os.makedirs('models', exist_ok=True)
model_path = "models/relvid_mm_sd15_fbc_unet.pth"
if not os.path.exists(model_path):
download_url_to_file(url='https://huggingface.co/aleafy/RelightVid/resolve/main/relvid_mm_sd15_fbc_unet.pth', dst=model_path)
ckpt = torch.load(model_path, map_location='cpu')
diffusion_model.load_state_dict(ckpt, strict=False)
# import pdb; pdb.set_trace()
# 更改全局临时目录
new_tmp_dir = "./demo/gradio_bg"
os.makedirs(new_tmp_dir, exist_ok=True)
# import pdb; pdb.set_trace()
def save_video_from_frames(image_pred, save_pth, fps=8):
"""
将 image_pred 中的帧保存为视频文件。
参数:
- image_pred: Tensor,形状为 (1, 16, 3, 512, 512)
- save_pth: 保存视频的路径,例如 "output_video.mp4"
- fps: 视频的帧率
"""
# 视频参数
num_frames = image_pred.shape[1]
frame_height, frame_width = 512, 512 # 目标尺寸
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 使用 mp4 编码格式
# 创建 VideoWriter 对象
out = cv2.VideoWriter(save_pth, fourcc, fps, (frame_width, frame_height))
for i in range(num_frames):
# 反归一化 + 转换为 0-255 范围
pred_frame = clip_image(unnormalize(image_pred[0][i].unsqueeze(0))) * 255
pred_frame_resized = pred_frame.squeeze(0).detach().cpu() # (3, 512, 512)
pred_frame_resized = pred_frame_resized.permute(1, 2, 0).numpy().astype("uint8") # (512, 512, 3)
# Resize 到 256x256
pred_frame_resized = cv2.resize(pred_frame_resized, (frame_width, frame_height))
# 将 RGB 转为 BGR(因为 OpenCV 使用 BGR 格式)
pred_frame_bgr = cv2.cvtColor(pred_frame_resized, cv2.COLOR_RGB2BGR)
# 写入帧到视频
out.write(pred_frame_bgr)
# 释放 VideoWriter 资源
out.release()
print(f"视频已保存至 {save_pth}")
inf_pipe = InferenceIP2PVideo(
diffusion_model.unet,
scheduler='ddpm',
num_ddim_steps=20
)
def process_example(*args):
v_index = args[0]
select_e = db_examples.background_conditioned_examples[int(v_index)-1]
input_fg_path = select_e[1]
input_bg_path = select_e[2]
result_video_path = select_e[-1]
# input_fg_img = args[1] # 第 0 个参数
# input_bg_img = args[2] # 第 1 个参数
# result_video_img = args[-1] # 最后一个参数
input_fg = input_fg_path.replace("frames/0000.png", "cropped_video.mp4")
input_bg = input_bg_path.replace("frames/0000.png", "cropped_video.mp4")
result_video = result_video_path.replace(".png", ".mp4")
return input_fg, input_bg, result_video
# 伪函数占位(生成空白视频)
def dummy_process(input_fg, input_bg, prompt):
# import pdb; pdb.set_trace()
diffusion_model.to(torch.float16)
fg_tensor = load_and_process_video(input_fg).cuda().unsqueeze(0).to(dtype=torch.float16)
bg_tensor = load_and_process_video(input_bg).cuda().unsqueeze(0).to(dtype=torch.float16) # (1, 16, 4, 64, 64)
cond_fg_tensor = diffusion_model.encode_image_to_latent(fg_tensor) # (1, 16, 4, 64, 64)
cond_bg_tensor = diffusion_model.encode_image_to_latent(bg_tensor)
cond_tensor = torch.cat((cond_fg_tensor, cond_bg_tensor), dim=2)
# 初始化潜变量
init_latent = torch.randn_like(cond_fg_tensor)
# EDIT_PROMPT = 'change the background'
EDIT_PROMPT = prompt
VIDEO_CFG = 1.2
TEXT_CFG = 7.5
text_cond = diffusion_model.encode_text([EDIT_PROMPT]) # (1, 77, 768)
text_uncond = diffusion_model.encode_text([''])
# to float16
print('------------to float 16----------------')
init_latent, text_cond, text_uncond, cond_tensor = (
init_latent.to(dtype=torch.float16),
text_cond.to(dtype=torch.float16),
text_uncond.to(dtype=torch.float16),
cond_tensor.to(dtype=torch.float16)
)
inf_pipe.unet.to(torch.float16)
latent_pred = inf_pipe(
latent=init_latent,
text_cond=text_cond,
text_uncond=text_uncond,
img_cond=cond_tensor,
text_cfg=TEXT_CFG,
img_cfg=VIDEO_CFG,
)['latent']
image_pred = diffusion_model.decode_latent_to_image(latent_pred) # (1,16,3,512,512)
output_path = os.path.join(new_tmp_dir, f"output_{int(time.time())}.mp4")
# clear_cache(output_path)
save_video_from_frames(image_pred, output_path)
# import pdb; pdb.set_trace()
# fps = 8
# frames = []
# for i in range(16):
# pred_frame = clip_image(unnormalize(image_pred[0][i].unsqueeze(0))) * 255
# pred_frame_resized = pred_frame.squeeze(0).detach().cpu() #(3,512,512)
# pred_frame_resized = pred_frame_resized.permute(1, 2, 0).detach().cpu().numpy().astype("uint8") #(512,512,3) np
# Image.fromarray(pred_frame_resized).save(save_pth)
# # 生成一个简单的黑色视频作为示例
# output_path = os.path.join(new_tmp_dir, "output.mp4")
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out = cv2.VideoWriter(output_path, fourcc, 20.0, (512, 512))
# for _ in range(60): # 生成 3 秒的视频(20fps)
# frame = np.zeros((512, 512, 3), dtype=np.uint8)
# out.write(frame)
# out.release()
torch.cuda.empty_cache()
return output_path
# 枚举类用于背景选择
class BGSource(Enum):
UPLOAD = "Use Background Video"
UPLOAD_FLIP = "Use Flipped Background Video"
UPLOAD_REVERSE = "Use Reversed Background Video"
# Quick prompts 示例
# quick_prompts = [
# 'beautiful woman, fantasy setting',
# 'beautiful woman, neon dynamic lighting',
# 'man in suit, tunel lighting',
# 'animated mouse, aesthetic lighting',
# 'robot warrior, a sunset background',
# 'yellow cat, reflective wet beach',
# 'camera, dock, calm sunset',
# 'astronaut, dim lighting',
# 'astronaut, colorful balloons',
# 'astronaut, desert landscape'
# ]
# quick_prompts = [
# 'beautiful woman',
# 'handsome man',
# 'beautiful woman, cinematic lighting',
# 'handsome man, cinematic lighting',
# 'beautiful woman, natural lighting',
# 'handsome man, natural lighting',
# 'beautiful woman, neo punk lighting, cyberpunk',
# 'handsome man, neo punk lighting, cyberpunk',
# ]
quick_prompts = [
'beautiful woman',
'handsome man',
'beautiful woman, cinematic lighting',
'handsome man, cinematic lighting',
'beautiful woman, natural lighting',
'handsome man, natural lighting',
'beautiful woman, warm lighting',
'handsome man, soft lighting',
'change the background lighting',
]
quick_prompts = [[x] for x in quick_prompts]
# css = """
# #foreground-gallery {
# width: 700 !important; /* 限制最大宽度 */
# max-width: 700px !important; /* 避免它自动变宽 */
# flex: none !important; /* 让它不自动扩展 */
# }
# """
css = """
#prompt-box, #bg-source, #quick-list, #relight-btn {
width: 750px !important;
}
"""
# Gradio UI 结构
block = gr.Blocks(css=css).queue()
with block:
with gr.Row():
# gr.Markdown("## RelightVid (Relighting with Foreground and Background Video Condition)")
gr.Markdown("# 💡RelightVid \n### Relighting with Foreground and Background Video Condition")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Video(label="Foreground Video", height=380, width=420, visible=True)
input_bg = gr.Video(label="Background Video", height=380, width=420, visible=True)
segment_button = gr.Button(value="Video Segmentation")
with gr.Accordion("Segmentation Options", open=False):
# 如果用户不使用 point_prompt,而是直接提供坐标,则使用 x, y
with gr.Row():
x_coord = gr.Slider(label="X Coordinate (Point Prompt Ratio)", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
y_coord = gr.Slider(label="Y Coordinate (Point Prompt Ratio)", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
fg_gallery = gr.Gallery(height=150, object_fit='contain', label='Foreground Quick List', value=db_examples.fg_samples, columns=5, allow_preview=False)
bg_gallery = gr.Gallery(height=450, object_fit='contain', label='Background Quick List', value=db_examples.bg_samples, columns=5, allow_preview=False)
with gr.Group():
# with gr.Row():
# num_samples = gr.Slider(label="Videos", minimum=1, maximum=12, value=1, step=1)
# seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
video_width = gr.Slider(label="Video Width", minimum=256, maximum=1024, value=512, step=64, visible=False)
video_height = gr.Slider(label="Video Height", minimum=256, maximum=1024, value=512, step=64, visible=False)
# with gr.Accordion("Advanced options", open=False):
# steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
# cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=7.0, step=0.01)
# highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
# highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.01)
# a_prompt = gr.Textbox(label="Added Prompt", value='best quality')
# n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
# normal_button = gr.Button(value="Compute Normal (4x Slower)")
with gr.Column():
result_video = gr.Video(label='Output Video', height=750, width=750, visible=True)
prompt = gr.Textbox(label="Prompt", elem_id="prompt-box")
bg_source = gr.Radio(choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source",
type='value',
elem_id="bg-source")
example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt], elem_id="quick-list")
relight_button = gr.Button(value="Relight", elem_id="relight-btn")
# prompt = gr.Textbox(label="Prompt")
# bg_source = gr.Radio(choices=[e.value for e in BGSource],
# value=BGSource.UPLOAD.value,
# label="Background Source", type='value')
# example_prompts = gr.Dataset(samples=quick_prompts, label='Prompt Quick List', components=[prompt])
# relight_button = gr.Button(value="Relight")
# fg_gallery = gr.Gallery(witdth=400, object_fit='contain', label='Foreground Quick List', value=db_examples.bg_samples, columns=4, allow_preview=False)
# fg_gallery = gr.Gallery(
# height=380,
# object_fit='contain',
# label='Foreground Quick List',
# value=db_examples.fg_samples,
# columns=4,
# allow_preview=False,
# elem_id="foreground-gallery" # 👈 添加 elem_id
# )
# 输入列表
# ips = [input_fg, input_bg, prompt, video_width, video_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
ips = [input_fg, input_bg, prompt]
# 按钮绑定处理函数
# relight_button.click(fn=lambda: None, inputs=[], outputs=[result_video])
relight_button.click(fn=dummy_process, inputs=ips, outputs=[result_video])
# normal_button.click(fn=dummy_process, inputs=ips, outputs=[result_video])
# 背景库选择
def bg_gallery_selected(gal, evt: gr.SelectData):
# import pdb; pdb.set_trace()
# img_path = gal[evt.index][0]
img_path = db_examples.bg_samples[evt.index]
video_path = img_path.replace('frames/0000.png', 'cropped_video.mp4')
return video_path
bg_gallery.select(bg_gallery_selected, inputs=bg_gallery, outputs=input_bg)
def fg_gallery_selected(gal, evt: gr.SelectData):
# import pdb; pdb.set_trace()
# img_path = gal[evt.index][0]
img_path = db_examples.fg_samples[evt.index]
video_path = img_path.replace('frames/0000.png', 'cropped_video.mp4')
return video_path
fg_gallery.select(fg_gallery_selected, inputs=fg_gallery, outputs=input_fg)
input_fg_img = gr.Image(label="Foreground Video", visible=False)
input_bg_img = gr.Image(label="Background Video", visible=False)
result_video_img = gr.Image(label="Output Video", visible=False)
v_index = gr.Textbox(label="ID", visible=False)
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False, queue=False)
# 示例
# dummy_video_for_outputs = gr.Video(visible=False, label='Result')
gr.Examples(
# fn=lambda *args: args[-1],
fn=process_example,
examples=db_examples.background_conditioned_examples,
# inputs=[v_index, input_fg_img, input_bg_img, prompt, bg_source, video_width, video_height, result_video_img],
inputs=[v_index, input_fg_img, input_bg_img, prompt, bg_source, result_video_img],
outputs=[input_fg, input_bg, result_video],
run_on_click=True, examples_per_page=1024
)
# 启动 Gradio 应用
# block.launch(server_name='0.0.0.0', server_port=10002, share=True)
block.launch(share=True)
|