File size: 4,098 Bytes
8c200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
057f6a7
 
 
 
 
 
8c200b4
057f6a7
8c200b4
057f6a7
 
 
8c200b4
 
057f6a7
 
8c200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f6a7
 
8c200b4
 
057f6a7
 
8c200b4
 
 
057f6a7
8c200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f6a7
8c200b4
 
 
 
 
 
 
 
 
 
 
 
057f6a7
8c200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Alan Ren @NYU ITP
// Spring 2024

// Global variables for the detector, image elements, and status paragraph
let detector;
let imgElement,
	defaultImg1,
	defaultImg1DataURL,
	defaultImg2,
	defaultImg2DataURL;
let statusP;

// Preload function to load the default image and convert it to a base64 data URL
function preload() {
	defaultImg1 = loadAndConvertImage('https://cors-anywhere-ajr.up.railway.app/https://hdwallpaperim.com/wp-content/uploads/2017/08/25/452511-street-street_view-cityscape-city.jpg', (dataURL) => {
		defaultImg1DataURL = dataURL;
	});

	defaultImg2 = loadAndConvertImage('https://cors-anywhere-ajr.up.railway.app/https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fdirectoffice.com%2Fwp-content%2Fuploads%2F2024%2F06%2FOffice-Storage-Cabinets-2048x1366.jpg&f=1&nofb=1&ipt=f6b591aded06e6451a47bac25c3b6fe04aa285fb7796c7bc35b881e063a07a5f&ipo=images', (dataURL) => {
		defaultImg2DataURL = dataURL;
	});
}

// Function to load an image and convert it to a base64 data URL
function loadAndConvertImage(url, callback) {
	return loadImage(url, (img) => {
		let offscreenGraphics = createGraphics(img.width, img.height);
		offscreenGraphics.image(img, 0, 0);
		let dataURL = offscreenGraphics.elt.toDataURL();
		callback(dataURL);
	});
}

// Setup function initializes the p5 sketch
function setup() {
	// Create a paragraph element to show status messages
	statusP = createP('Loading model...').style('color', 'blue');

	// Check if the transformersPipeline is loaded and available
	if (typeof window.transformersPipeline === 'undefined') {
		console.error('Transformers pipeline not available!');
		statusP.html('Pipeline loading failed.');
		return;
	}

	// Initialize the object detection model using the transformersPipeline
	window
		.transformersPipeline('object-detection', 'Xenova/yolos-tiny', {
			device: 'webgpu',
		})
		.then((d) => {
			detector = d;
			statusP.html('Model ready. Upload an image.');
		})
		.catch((error) => {
			console.error('Error loading the model: ', error);
			statusP.html('Model loading failed.');
		});

	// Create a file input for image upload
	createFileInput(imageUploaded).attribute('accept', 'image/*');
	createButton('Example 1').mousePressed(() => loadExampleImage(defaultImg1DataURL));
	createButton('Example 2').mousePressed(() => loadExampleImage(defaultImg2DataURL));
}

// Function to load an example image
function loadExampleImage(dataURL) {
	if (imgElement) {
		imgElement.remove();
	}
	imgElement = createImg(dataURL, '').hide();
	detect(imgElement);
}

// Function to handle uploaded images
function imageUploaded(file) {
	if (file.type === 'image') {
		if (imgElement) {
			imgElement.remove(); // Remove the previous image if exists
		}
		imgElement = createImg(file.data, '').hide();
		detect(imgElement);
	} else {
		statusP.html('Please upload an image file.');
	}
}

// Function to perform object detection
async function detect(image) {
	statusP.html('Analysing...');
	const results = await detector(image.elt.src, {
		threshold: 0.5,
		percentage: true,
	});

	displayImageAndBoxes(image, results);
	statusP.html('Image Processed');
}

// Function to display the image and bounding boxes on the canvas
function displayImageAndBoxes(img, results) {
	let scaleX = windowWidth / img.width;
	let scaleY = scaleX;

	let scaledWidth = img.width * scaleX;
	let scaledHeight = img.height * scaleY;

	resizeCanvas(windowWidth, scaledHeight + 200);
	image(img, 0, 100, scaledWidth, scaledHeight);

	for (const result of results) {
		const { box, label } = result;
		const { xmax, xmin, ymax, ymin } = box;

		let rectX = xmin * scaledWidth;
		let rectY = ymin * scaledHeight + 100;
		let rectWidth = (xmax - xmin) * scaledWidth;
		let rectHeight = (ymax - ymin) * scaledHeight;

		stroke(255, 0, 0);
		noFill();
		rect(rectX, rectY, rectWidth, rectHeight);

		fill(255);
		strokeWeight(1);
		textSize(16);
		text(label, rectX, rectY - 10);
	}
}

// The draw function is left empty because updates only occur during detection
function draw() {
	// Leave this function empty if updates only occur during detection
}