Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,54 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
# demo = gr.Interface(
|
38 |
-
# fn=chat_fn,
|
39 |
-
# inputs=[
|
40 |
-
# gr.Textbox(lines=2, label="User Message"),
|
41 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System Prompt"),
|
42 |
-
# gr.Textbox(lines=4, placeholder="user||bot\nuser2||bot2", label="Conversation History (optional)"),
|
43 |
-
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
44 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
45 |
-
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
46 |
-
# ],
|
47 |
-
# outputs="text",
|
48 |
-
# allow_flagging="never",
|
49 |
-
# title="LLM Budaya",
|
50 |
-
# description="Chatbot menggunakan model HuggingFace Zephyr-7B"
|
51 |
-
# )
|
52 |
-
|
53 |
-
# if __name__ == "__main__":
|
54 |
-
# demo.launch()
|
55 |
-
|
56 |
-
import gradio as gr
|
57 |
-
import torch
|
58 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
-
|
60 |
-
# Load model & tokenizer
|
61 |
-
model_id = "mistralai/Mistral-Small-24B-Instruct-2501"
|
62 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
63 |
|
64 |
-
# Load model di CPU
|
65 |
-
model = AutoModelForCausalLM.from_pretrained(
|
66 |
-
model_id,
|
67 |
-
torch_dtype=torch.float32,
|
68 |
-
device_map={"": "cpu"}
|
69 |
-
)
|
70 |
-
|
71 |
-
# Inference function
|
72 |
-
def chat_fn(message, system_prompt, max_tokens, temperature, top_p):
|
73 |
-
prompt = f"<s>[INST] {system_prompt.strip()}\n{message.strip()} [/INST]"
|
74 |
-
|
75 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
76 |
-
|
77 |
-
with torch.no_grad():
|
78 |
-
output = model.generate(
|
79 |
-
**inputs,
|
80 |
-
max_new_tokens=max_tokens,
|
81 |
-
temperature=temperature,
|
82 |
-
top_p=top_p,
|
83 |
-
do_sample=True,
|
84 |
-
pad_token_id=tokenizer.eos_token_id
|
85 |
-
)
|
86 |
-
|
87 |
-
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
88 |
-
return decoded.split("[/INST]")[-1].strip()
|
89 |
-
|
90 |
-
# Gradio UI
|
91 |
demo = gr.Interface(
|
92 |
fn=chat_fn,
|
93 |
inputs=[
|
94 |
gr.Textbox(lines=2, label="User Message"),
|
95 |
-
gr.Textbox(value="You are a
|
96 |
-
gr.
|
|
|
97 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
98 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
99 |
],
|
100 |
outputs="text",
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
)
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
demo.launch()
|
108 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
|
5 |
+
client = InferenceClient(
|
6 |
+
model="mistralai/Mistral-7B-Instruct-v0.3",
|
7 |
+
token=os.getenv('HF_TOKEN')
|
8 |
+
)
|
9 |
|
10 |
+
def chat_fn(message, system_message, history_str, max_tokens, temperature, top_p):
|
11 |
+
# Convert history string (optional) to message list
|
12 |
+
messages = [{"role": "system", "content": system_message}]
|
13 |
|
14 |
+
if history_str:
|
15 |
+
# Format: user1||assistant1\nuser2||assistant2
|
16 |
+
for pair in history_str.split("\n"):
|
17 |
+
if "||" in pair:
|
18 |
+
user_msg, assistant_msg = pair.split("||", 1)
|
19 |
+
messages.append({"role": "user", "content": user_msg})
|
20 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
21 |
|
22 |
+
messages.append({"role": "user", "content": message})
|
23 |
+
|
24 |
+
# Get response from HF
|
25 |
+
response = ""
|
26 |
+
for chunk in client.chat_completion(
|
27 |
+
messages=messages,
|
28 |
+
stream=True,
|
29 |
+
max_tokens=max_tokens,
|
30 |
+
temperature=temperature,
|
31 |
+
top_p=top_p,
|
32 |
+
):
|
33 |
+
response += chunk.choices[0].delta.content or ""
|
34 |
|
35 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
demo = gr.Interface(
|
38 |
fn=chat_fn,
|
39 |
inputs=[
|
40 |
gr.Textbox(lines=2, label="User Message"),
|
41 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System Prompt"),
|
42 |
+
gr.Textbox(lines=4, placeholder="user||bot\nuser2||bot2", label="Conversation History (optional)"),
|
43 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
|
44 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
45 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
46 |
],
|
47 |
outputs="text",
|
48 |
+
allow_flagging="never",
|
49 |
+
title="LLM Budaya",
|
50 |
+
description="Chatbot menggunakan model HuggingFace Zephyr-7B"
|
51 |
)
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
+
demo.launch()
|
|